Early Diagnosis of Eye Disease Using an Expert System-Based Chatbot
Abstract
Chatbots have emerged as popular tools across various domains, including expert systems for disease diagnosis. This research aims to develop a chatbot leveraging the Naive Bayes method within an expert system for diagnosing eye diseases. The Naive Bayes method was chosen for its efficiency in handling data classification and its ability to provide the necessary class probabilities in diagnosis. The resulting chatbot is designed to simplify the diagnosis process for users by providing a user-friendly and easily understandable interface. Evaluation of the system demonstrated an 87% accuracy rate in initial diagnoses when compared against specialist evaluations. Additionally, the User Acceptance Test revealed a high acceptance rate, with an average score of 84.75%, indicating strong user satisfaction with the system’s performance and ease of use. These findings suggest that deploying a chatbot with the Naive Bayes method in an expert system for diagnosing eye diseases has the potential to serve as a valuable platform in supporting medical practitioners in diagnosing eye diseases more efficiently and accurately.
References
Alkatan, H. M., & Al-Essa, R. S. (2019). Challenges in the Diagnosis of Microbial Keratitis: A Detailed Review with Update and General Guidelines. Saudi Journal of Ophthalmology, 33(3), 268–276. https://doi.org/10.1016/j.sjopt.2019.09.002
Alturaiki, A. M., Banjar, H. R., Barefah, A. S., Alnajjar, S. A., & Hindawi, S. (2022). A smart chatbot for interactive management in beta thalassemia patients. International Journal of Telemedicine and Applications, 2022, 1–13. https://doi.org/10.1155/2022/9734518
Chow, J. C. L., Wong, V., & Li, K. (2024). Generative pre-trained transformer-empowered healthcare conversations: current trends, challenges, and future directions in large language model-enabled medical chatbots. BioMedInformatics, 4(1), 837–852. https://doi.org/10.3390/biomedinformatics4010047
Cicinelli, M., Marmamula, S., & Khanna, R. (2020). Comprehensive Eye Care - Issues, Challenges, and Way Forward. Indian Journal of Ophthalmology, 68(2), 316. https://doi.org/10.4103/ijo.IJO_17_19
de Pennington, N., Mole, G., Lim, E., Milne-Ives, M., Normando, E., Xue, K., & Meinert, E. (2021). Safety and acceptability of a natural language artificial intelligence assistant to deliver clinical follow-up to cataract surgery patients: proposal. JMIR Research Protocols, 10(7), e27227. https://doi.org/10.2196/27227
Dutta, S., & Wilson, M. (2021). Spatial Mapping of Distributed Sensors Biomimicking the Human Vision System. Electronics, 10(12), 1443. https://doi.org/10.3390/electronics10121443
Fatani, M., & Banjar, H. (2024). Web-based expert bots system in identifying complementary personality traits and recommending optimal team composition. International Journal of Advanced Computer Science and Applications, 15(2), 106–120. https://doi.org/10.14569/IJACSA.2024.0150213
Gama, A. W. O., & Putri, D. A. P. A. G. (2020). Sistem Pakar Menggunakan Metode Pembobotan Gejala Penyakit Mata. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(3), 601–607.
Gama, A. W. O., Putri, D. A. P. A. G., & Prathama, G. H. (2022). Sistem pakar untuk mendeteksi enis kerusakan jalan: studi kasus pada perkerasan lentur. Techno.Com, 21(3), 554–564. https://doi.org/10.33633/tc.v21i3.6145
Gama, A. W. O., & Wardhiana, I. N. G. A. M. (2023). Naïve bayes on diagnostic expert system for menstrual disorders. In Journal of Intelligent Decision Support System (IDSS) (Vol. 6, Issue 2). https://doi.org/https://doi.org/10.35335/idss.v6i2.130
Gholamzadeh, M., Abtahi, H., & Safdari, R. (2023). The Application of Knowledge-Based Clinical Decision Support Systems to Enhance Adherence to Evidence-Based Medicine in Chronic Disease. Journal of Healthcare Engineering, 2023, 1–19. https://doi.org/10.1155/2023/8550905
Kurniawan, A., Sumijan, & Jufriadif Na’am. (2019). Sistem Pakar Identifikasi Modalitas Belajar Siswa Menggunakan Metode Forward Chaining. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 518–523. https://doi.org/10.29207/resti.v3i3.1166
Li, S., Ye, E., Huang, J., Wang, J., Zhao, Y., Niu, D., Yue, S., Huang, X., Liu, J., Hou, X., & Wu, J. (2022). Global, Regional, and National Years Lived With Disability Due to Blindness and Vision Loss From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1033495
Mazhar, T., Nasir, Q., Haq, I., Kamal, M. M., Ullah, I., Kim, T., Mohamed, H. G., & Alwadai, N. (2022). A Novel Expert System for the Diagnosis and Treatment of Heart Disease. Electronics, 11(23), 3989. https://doi.org/10.3390/electronics11233989
Muntean, G. A., Groza, A., Marginean, A., Slavescu, R. R., Steiu, M. G., Muntean, V., & Nicoara, S. D. (2023). Artificial Intelligence for Personalised Ophthalmology Residency Training. Journal of Clinical Medicine, 12(5), 1825. https://doi.org/10.3390/jcm12051825
Poeschl, S., Lieb, J., Wirth, F., & Bauernhansl, T. (2017). Expert Systems in Special Machinery: Increasing the Productivity of Processes in Commissioning. Procedia CIRP, 63, 545–550. https://doi.org/10.1016/j.procir.2017.03.162
Ramke, J., Evans, J. R., Habtamu, E., Mwangi, N., Silva, J. C., Swenor, B. K., Congdon, N., Faal, H. B., Foster, A., Friedman, D. S., Gichuhi, S., Jonas, J. B., Khaw, P. T., Kyari, F., Murthy, G. V. S., Wang, N., Wong, T. Y., Wormald, R., Yusufu, M., … Sapkota, Y. (2022). Grand Challenges in Global Eye Health: a Global Prioritisation Process Using Delphi Method. The Lancet Healthy Longevity, 3(1), e31–e41. https://doi.org/10.1016/S2666-7568(21)00302-0
Sabaner, M. C., Anguita, R., Antaki, F., Balas, M., Boberg-Ans, L. C., Ferro Desideri, L., Grauslund, J., Hansen, M. S., Klefter, O. N., Potapenko, I., Rasmussen, M. L. R., & Subhi, Y. (2024). Opportunities and challenges of chatbots in ophthalmology: a narrative review. Journal of Personalized Medicine, 14(12), 1165. https://doi.org/10.3390/jpm14121165
Siddique, M. A. A., Jannatul Ferdouse, Md. Tarek Habib, Md. Jueal Mia, & Mohammad Shorif Uddin. (2022). Convolutional Neural Network Modeling for Eye Disease Recognition. International Journal of Online and Biomedical Engineering (IJOE), 18(09), 115–130. https://doi.org/10.3991/ijoe.v18i09.29847
Siek, M., & Urian, T. W. (2021). Converging on mutual harmony of knowledge-based expert system and technology consultant. IOP Conference Series: Earth and Environmental Science, 729(1), 012131. https://doi.org/10.1088/1755-1315/729/1/012131
Soetanto, H., Painem, & Suryadewiansyah, M. K. (2024). Optimization of expert system based on interpolation, forward chaining, and certainty factor for diagnosing abdominal colic. Journal of Computer Science, 20(2), 191–197. https://doi.org/10.3844/jcssp.2024.191.197
Sun, X., Liu, Y., De Wit, J., Bosch, J. A., & Li, Z. (2024). Trust by interface: how different user interfaces shape human trust in health information from Large Language Models. Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, 1–7. https://doi.org/10.1145/3613905.3650837
Tan, T. F., Thirunavukarasu, A. J., Jin, L., Lim, J., Poh, S., Teo, Z. L., Ang, M., Chan, R. V. P., Ong, J., Turner, A., Karlström, J., Wong, T. Y., Stern, J., & Ting, D. S.-W. (2023). Artificial Intelligence and Digital Health in Global Eye Health: Opportunities and Challenges. The Lancet Global Health, 11(9), e1432–e1443. https://doi.org/10.1016/S2214-109X(23)00323-6
Verjee, M. A., Brissette, A. R., & Starr, C. E. (2020). Dry Eye Disease: Early Recognition with Guidance on Management and Treatment for Primary Care Family Physicians. Ophthalmology and Therapy, 9(4), 877–888. https://doi.org/10.1007/s40123-020-00308-z
Villegas-Ch, W., Arias-Navarrete, A., & Palacios-Pacheco, X. (2020). Proposal of an architecture for the integration of a chatbot with artificial intelligence in a smart campus for the improvement of learning. Sustainability, 12(4), 1500. https://doi.org/10.3390/su12041500
Williams, L. B., Prakalapakorn, S. G., Ansari, Z., & Goldhardt, R. (2020). Impact and Trends in Global Ophthalmology. Current Ophthalmology Reports, 8(3), 136–143. https://doi.org/10.1007/s40135-020-00245-x
World Population Review. (2024). Telegram user by country. https://worldpopulationreview.com/country-rankings/telegram-users-by-country.
Copyright (c) 2024 Indonesian Journal of Global Health Research
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.