Role of Optical Coherence Tomography (OCT) in Macular Oedema and Diabetic Retinopathy (DR) Update; Systematic Literature Review
Abstract
Diabetic retinopathy (DR) and diabetic macular oedema (DME) are significant causes of blindness globally, resulting from diabetes-induced retinal damage. Early detection and timely intervention are critical to prevent irreversible vision loss in diabetic patients. Recent advances in imaging technology, particularly Optical Coherence Tomography (OCT), have provided a powerful tool for detailed visualisation of retinal structures, enabling the early identification of microvascular changes associated with DR and DME. This systematic review synthesises insights from 20 studies to explore the effectiveness of OCT in diagnosing, monitoring, and guiding treatment for these conditions. A comprehensive literature search was conducted across databases including Scopus, Scholar, and PubMed, using Boolean operators to combine keywords such as “OCT,” “OCTA,” “diabetic retinopathy,” and “deep learning.” Studies were selected based on criteria that included the use of OCT or OCTA in assessing DR or DME, providing statistical data on diagnostic accuracy and treatment response. The results indicate that OCT, particularly when paired with OCT Angiography (OCTA) and AI-driven analysis, significantly enhances the accuracy of detecting early microvascular changes in diabetic eyes. For instance, Zhang et al. (2021) found that OCTA could identify early retinal vascular alterations in diabetic patients with a sensitivity and specificity exceeding 90%. Additional findings reveal that OCT plays a crucial role in tracking disease progression and evaluating treatment efficacy, with improved visual outcomes observed in patients receiving anti-VEGF therapy monitored via OCTA. In conclusion, OCT has established itself as an invaluable tool in the management of DR and DME, enabling early diagnosis, precise monitoring, and tailored therapeutic interventions. Integrating artificial intelligence further augments OCT’s diagnostic capabilities, enhancing its potential to revolutionise diabetic eye care. However, accessibility and cost barriers remain challenges, emphasising the need for future research to focus on optimising AI models and expanding OCT accessibility in routine clinical settings.
References
Ahmed Khalil, H. E. M., Osman Abd-El Khalek, M., & Abd Elsattar Elnoby, A. (2021). Diabetic Macular Ischemia Diagnosis: Comparison between Optical Coherence Tomography Angiography & Fundus Fluorescein Angiography. Egyptian Journal of Medical Research, 2(2). https://doi.org/10.21608/ejmr.2021.174980
Ahmed, R., Hassan, B., Khan, A., Hassan, T., Dias, J., Seghier, M. L., & Werghi, N. (2024). Retinopathy screening from OCT imagery via deep learning. In Data Fusion Techniques and Applications for Smart Healthcare (pp. 1–20). Elsevier. https://doi.org/10.1016/B978-0-44-313233-9.00007-2
Akpinar, M. H., Sengur, A., Faust, O., Tong, L., Molinari, F., & Acharya, U. R. (2024). Artificial Intelligence in Retinal Screening Using OCT Images: A Review of the Last Decade (2013–2023). Computer Methods and Programs in Biomedicine, 108253.
Ashrafkhorasani, M., Habibi, A., Nittala, M. G., Yaseri, M., Emamverdi, M., Velaga, S. B., Wykoff, C. C., Ciulla, T. A., Ip, M., & Sadda, S. R. (2024). Spectral-domain OCT characteristics of intraretinal hyper-reflective foci associated with age-related macular degeneration and diabetic retinopathy. Canadian Journal of Ophthalmology. https://doi.org/10.1016/j.jcjo.2024.07.017
Barraso, M., Alé-Chilet, A., Hernandez, T., Oliva, C., Vinagre, I., Ortega, E., Figueras-Roca, M., Sala-Puigdollers, A., Esquinas, C., Esmatjes, E., Adán, A., & Zarranz-Ventura, J. (2020). Optical coherence tomography angiography in type 1 diabetes mellitus: Report 1. Translational Vision Science & Technology. https://doi.org/10.1167/TVST.9.10.34
Borrelli, E., Battista, M., Sacconi, R., Querques, G., & Bandello, F. (2021). Optical coherence tomography angiography in diabetes. Asia-Pacific Journal of Ophthalmology. https://doi.org/10.1097/APO.0000000000000351
Chua, J., Sim, R., Tan, B., Wong, D., Yao, X., Liu, X., Ting, W. S., Schmidl, D., Ang, M., Garhöfer, G., & Schmetterer, L. (2020). Optical coherence tomography
David, L., Alam, M., Cham, K., Lim, Y.-T., Robison, V., Chan, P., Toslak, D., & Yao, X. (2020). Transfer learning for automated OCTA detection of diabetic retinopathy. Translational Vision Science & Technology. https://doi.org/10.1167/TVST.9.2.35
Devi, M. S. S., Ramkumar, S., Kumar, V. S., & Sasi, G. (2021). Detection of diabetic retinopathy using OCT image. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.04.070
Elgafi, M., Sharafeldeen, A., Elnakib, A., Elgarayhi, A., Alghamdi, N. S., Sallah, M., & El-Baz, A. (2022). Detection of Diabetic Retinopathy Using Extracted 3D Features from OCT Images. Sensors, 22(20). https://doi.org/10.3390/s22207833
Gao, Y., Tuokedaerhan, Z., Zhang, J., Yang, L., Zhang, Y., Cheng, W., Zhao, Y., & Wang, J. (2024). Comparative study of the vascular structures of the retina and choroid in Chinese Han and Uygur populations with proliferative diabetic retinopathy: An OCTA study. Photodiagnosis and Photodynamic Therapy, 45, 103995. https://doi.org/10.1016/j.pdpdt.2024.103995
Ghazal, M., Al Khalil, Y., Alhalabi, M., Fraiwan, L., & El-Baz, A. (2020). Early detection of diabetics using retinal OCT images. In Diabetes and Retinopathy (pp. 173–204). Elsevier. https://doi.org/10.1016/B978-0-12-817438-8.00009-2
Hamada, M., Hirai, K., Wakabayashi, T., Ishida, Y., Fukushima, M., Kamei, M., & Tsuboi, K. (2024). Practical Utility of Widefield OCT Angiography to Detect Retinal Neovascularization in Eyes with Proliferative Diabetic Retinopathy. Ophthalmology Retina, 8(5), 481–489. https://doi.org/10.1016/j.oret.2023.11.009
Massengill, M. T., Cubillos, S., Sheth, N., Sethi, A., & Lim, J. I. (2024). Response of Diabetic Macular Edema to Anti-VEGF Medications Correlates with Improvement in Macular Vessel Architecture Measured with OCT Angiography. Ophthalmology Science, 4(4), 100478. https://doi.org/10.1016/j.xops.2024.100478
Nanegrungsunk, O., Patikulsila, D., & Sadda, S. (2022). Ophthalmic imaging in diabetic retinopathy: A review. Clinical and Experimental Ophthalmology, 50(9), 1082–1096. https://doi.org/10.1111/ceo.14170
Ramkumar, S., Devi, M. S. S., Kumar, V. S., & Sasi, G. (2021). Detection of diabetic retinopathy using OCT image. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.04.070
Remolí Sargues, L., Castro Navarro, V., Monferrer Adsuara, C., Navarro Palop, C., Montero Hernández, J., & Cervera Taulet, E. (2024). Optical coherence tomography angiography analysis of choroidal microvasculature in various forms of diabetic macular edema. Journal Francais d’Ophtalmologie. https://doi.org/10.1016/j.jfo.2023.03.037
Sandhu, H. S., Elmogy, M., Taher Sharafeldeen, A., Elsharkawy, M., El-Adawy, N., Eltanboly, A., Shalaby, A., Keynton, R., & El-Baz, A. (2020). Automated Diagnosis of Diabetic Retinopathy Using Clinical Biomarkers, Optical Coherence Tomography, and Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 216, 201–206. https://doi.org/10.1016/J.AJO.2020.01.016
Schwartz, R., Khalid, H., Sivaprasad, S., Nicholson, L., Anikina, E., Sullivan, P., Patel, P. J., Balaskas, K., & Keane, P. A. (2020). Objective Evaluation of Proliferative Diabetic Retinopathy Using OCT. Ophthalmology Retina. https://doi.org/10.1016/j.oret.2019.09.004
Sharafeldeen, A., Elsharkawy, M., Khalifa, F., Soliman, A., Ghazal, M., AlHalabi, M., ... & El-Baz, A. (2021). Precise higher-order reflectivity and morphology models for early diagnosis of diabetic retinopathy using OCT images. Scientific Reports, 11(1), 4730. https://doi.org/10.1038/s41598-021-83735-7
Szeto, S., Hui, V. W. K., Tang, F. Y., Yang, D., Sun, Z., Mohamed, S., Chan, C. K. M., Lai, T. Y. Y., & Cheung, C. Y. (2021). OCT-based biomarkers for predicting treatment response in eyes with center-involved diabetic macular edema treated with anti-VEGF injections: A real-life retina clinic-based study. British Journal of Ophthalmology. https://doi.org/10.1136/bjophthalmol-2021-319587
Tsuboi, K., Mazloumi, M., Guo, Y., Wang, J., Flaxel, C. J., Bailey, S. T., Wilson, D. J., Huang, D., Jia, Y., & Hwang, T. S. (2024). Early Sign of Retinal Neovascularization Evolution in Diabetic Retinopathy: A Longitudinal OCT Angiography Study. Ophthalmology Science, 4(2), 100382. https://doi.org/10.1016/J.XOPS.2023.100382
Velaga, S. B., Nittala, M. G., Alagorie, A. R., Marram, J., Hu, Z. J., Wang, Z., Ciulla, T. A., Kapik, B., Sadda, S. R., & Ip, M. (2024). OCT outcomes as biomarkers for disease status, visual function, and prognosis in diabetic macular edema. Canadian Journal of Ophthalmology. https://doi.org/10.1016/j.jcjo.2023.01.012
Wang, L., Li, B., Pan, J., Zhang, C., & Wang, T. (2024). Optical coherence tomography image recognition of diabetic retinopathy based on deep transfer learning. Journal of Radiation Research and Applied Sciences, 17(3), 101026. https://doi.org/10.1016/J.JRRAS.2024.101026
Wang, Z., Li, X., Yao, M., Li, J., Jiang, Q., & Yan, B. (2022). A new detection model of microaneurysms based on improved FC-DenseNet. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-021-04750-2
Wijesingha, N., Tsai, W.-S., Keskin, A. M., Holmes, C., Kazantzis, D., Chandak, S., Kubravi, H., & Sivaprasad, S. (2024). Optical Coherence Tomography Angiography as a Diagnostic Tool for Diabetic Retinopathy. Diagnostics, 14(3), 326. https://doi.org/10.3390/diagnostics14030326
Zhang, B., Chou, Y., Zhao, X., Yang, J., & Chen, Y. (2021). Early Detection of Microvascular Impairments With Optical Coherence Tomography Angiography in Diabetic Patients Without Clinical Retinopathy: A Meta-analysis. In American Journal of Ophthalmology. https://doi.org/10.1016/j.ajo.2020.09.032
Copyright (c) 2024 Indonesian Journal of Global Health Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



