Detection of Gene Alg8 and Alg44 in Clinical Isolates Pseudomonas Aeruginosa using Plymerase Chain Reaction Method
Abstract
The alg8 and alg44 genes are one of the genes that control alginate production in Pseudomonas aeruginosa bacteria, these genes are one of the main virulence factors causing chronic infections in the human body. Pseudomonas aeruginosa is a bacterium that causes infections in several cases in various parts of the body. The purpose of this study was to detect the presence of alg8 and alg44 genes in several isolates of Pseudomonas aeruginosa from several clinical samples (urine, sputum, and pus) using the Polymerase Chains Reaction method. The study was initiated by characterizing and purification of 6 isolates of Pseudomonas aeruginosa from urine, sputum, and pus samples (2 isolates each), identification of isolates was carried out by biochemical tests. Bacterial DNA isolation was carried out using the DNeasy Blood and Tissue Kit, the results of the isolation were tested by electrophoresis. Six samples of Pseudomonas aeruginosa DNA were tested for the presence of alg8 and alg44 genes by PCR method. The primary design was carried out using the website https://www.ncbi.nlm.nih.gov. The alg8 gene as a whole consists of 1214 nitrogenous bases, the primer used produces an amplicon of 882 bp (72.6%), alg44 gene consists of 818bp, the primer used amplifies 316 bp (36%). alg8 and alg44 genes were found in all isolates of Pseudomonas aeruginosa.
References
Davarzani, F., Yousefpour, Z., Saidi, N., & Owlia, P. (2021). Different effects of sub-minimum inhibitory concentrations of gentamicin on the expression of genes involved in alginate production and biofilm formation of Pseudomonas aeruginosa. Iranian Journal of Microbiology, 13(6), 808–816. https://doi.org/10.18502/IJM.V13I6.8085
Dimitriou, E. (2020). Chemical synthesis of modified D ˗ mannuronate building blocks : prospects for modified alginates. June.
Franco-Duarte, R., Černáková, L., Kadam, S., Kaushik, K. S., Salehi, B., Bevilacqua, A., Corbo, M. R., Antolak, H., Dybka-Stępień, K., Leszczewicz, M., Tintino, S. R., de Souza, V. C. A., Sharifi-Rad, J., Coutinho, H. D. M., Martins, N., & Rodrigues, C. F. (2019). Advances in chemical and biological methods to identify microorganisms—from past to present. Microorganisms, 7(5). https://doi.org/10.3390/microorganisms7050130
Jurado-Martín, I., Sainz-Mejías, M., & McClean, S. (2021). Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. International Journal of Molecular Sciences, 22(6), 1–37. https://doi.org/10.3390/ijms22063128
Liu, J., Yu, M., Chatnaparat, T., Lee, J. H., Tian, Y., Hu, B., & Zhao, Y. (2020). Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae. BMC Genomics, 21(1), 1–18. https://doi.org/10.1186/s12864-020-6701-2
Martínez-Ortiz, I. C., Ahumada-Manuel, C. L., Hsueh, B. Y., Guzmán, J., Moreno, S., Cocotl-Yañez, M., Waters, C. M., Zamorano-Sánchez, D., Espín, G., & Núñeza, C. (2020). Cyclic di-GMP-Mediated Regulation of Extracellular Mannuronan C-5 Epimerases Is Essential for Cyst Formation in Azotobacter vinelandii. Journal of Bacteriology, 202(24). https://doi.org/10.1128/JB.00135-20
Muhammadi, & Shafiq, S. (2019). Genetic, structural and pharmacological characterization of polymannuronate synthesized by algG mutant indigenous soil bacterium Pseudomonas aeruginosa CMG1421. Journal of Applied Microbiology, 126(1), 113–126. https://doi.org/10.1111/jam.14098
Pournajaf, A., Razavi, S., Irajian, G., Ardebili, A., Erfani, Y., Solgi, S., Yaghoubi, S., Rasaeian, A., Yahyapour, Y., Kafshgari, R., Shoja, S., & Rajabnia, R. (2018). Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infezioni in Medicina, 26(3), 226–236.
Powell, L. C., Pritchard, M. F., Ferguson, E. L., Powell, K. A., Patel, S. U., Rye, P. D., Sakellakou, S. M., Buurma, N. J., Brilliant, C. D., Copping, J. M., Menzies, G. E., Lewis, P. D., Hill, K. E., & Thomas, D. W. (2018). Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. Npj Biofilms and Microbiomes, 4(1). https://doi.org/10.1038/s41522-018-0056-3
Protects, E. A. (2020). Exogenous Alginate Protects Staphylococcus aureus from. 202(8), 1–17.
Rekadwad, B., Maske, V., Khobragade, C. N., & Kasbe, P. S. (2019). Production and evaluation of mono- and di-rhamnolipids produced by Pseudomonas aeruginosa VM011. Data in Brief, 24, 103890. https://doi.org/10.1016/j.dib.2019.103890
Rocha, A. J., De Oliveira Barsottini, M. R., Rocha, R. R., Laurindo, M. V., De Moraes, F. L. L., & Da Rocha, S. L. (2019). Pseudomonas aeruginosa: Virulence factors and antibiotic resistance Genes. Brazilian Archives of Biology and Technology, 62, 1–15. https://doi.org/10.1590/1678-4324-2019180503
Romero, E. B., Sanz, D. G., Durán, D., Rivilla, R., Nieto, M. R., & Martín, M. (2022). Regulation of extracellular matrix components by AmrZ is mediated by c ‑ di ‑ GMP in Pseudomonas ogarae F113. Scientific Reports, 1–10. https://doi.org/10.1038/s41598-022-16162-x
Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., McVeigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database, 2020(2), 1–21. https://doi.org/10.1093/database/baaa062
Valentine, M. E., Kirby, B. D., Withers, T. R., Johnson, S. L., Long, T. E., Hao, Y., Lam, J. S., Niles, R. M., & Yu, H. D. (2020). Generation of a highly attenuated strain of Pseudomonas aeruginosa for commercial production of alginate. Microbial Biotechnology, 13(1), 162–175. https://doi.org/10.1111/1751-7915.13411
Vetrivel, A., Ramasamy, M., Vetrivel, P., Natchimuthu, S., Arunachalam, S., Kim, G.-S., & Murugesan, R. (2021). Pseudomonas aeruginosa Biofilm Formation and Its Control. Biologics, 1(3), 312–336. https://doi.org/10.3390/biologics1030019
Wahyudi, D., Aman, A. T., Handayani, N. S. N., & Soetarto, E. S. (2019). Differences among clinical isolates of Pseudomonas aeruginosa in their capability of forming biofilms and their susceptibility to antibiotics. Biodiversitas, 20(5), 1450–1456. https://doi.org/10.13057/biodiv/d200538
Whitney, J. C., Hay, I. D., Li, C., Eckford, P. D. W., Robinson, H., Amaya, M. F., Wood, L. F., Ohman, D. E., Bear, C. E., Rehm, B. H., & Howell, P. L. (2011). Structural basis for alginate secretion across the bacterial outer membrane. Proceedings of the National Academy of Sciences of the United States of America, 108(32), 13083–13088. https://doi.org/10.1073/pnas.1104984108
Wolska, K., Kot, B., & Jakubczak, A. (2012). Phenotypic and genotypic diversity of Pseudomonas aeruginosa strains isolated from hospitals in Siedlce (Poland). Brazilian Journal of Microbiology, 43(1), 274–282. https://doi.org/10.1590/S1517-83822012000100032.



