Hospital Wastewater Pharmaceutical Residues and Their Impact on Community Microbial Resistance: An Epidemiological and Pharmaceutical Systematic Review
Abstract
Releases from healthcare facilities account for a large portion of environmental pollution, with wastewater carrying a cocktail of pharmaceutical contaminants, especially antibiotics. These compounds accelerate the accumulation of antimicrobial resistance. Objective: The study synthesizes the scientific record on the concentration, fate, and effects of pharmaceutical compounds within hospital wastewater; it foregrounds the links to growing microbial resistance and delineates the threat to public health. The review adhered to the 2020 PRISMA framework. The search strategy applied a combination of keywords ("pharmaceutical residues" OR "antibiotic residues") AND ("hospital wastewater") AND ("antimicrobial resistance") AND ("environmental impact" OR "community"). The search was restricted to titles and abstracts of studies published 2015-2025. The article selection process consisted of title and abstract screening, full-text evaluation, and consensus-based discussion. Of the 405 articles initially identified, 21 met the eligibility criteria and were narratively synthesized. Hospital wastewater was found to contain a variety of antibiotics, particularly β-lactams, fluoroquinolones, tetracyclines, macrolides, and sulfonamides, at concentrations higher than those observed in domestic wastewater. Several ARGs including blaNDM, blaKPC, blaOXA, sul1, sul2, qnr, tet, and mcr were frequently detected, alongside resistant pathogenic isolates such as Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Conventional wastewater treatment processes were shown to be only partially effective, achieving removal efficiencies of 16-50% for pharmaceutical residues and ARGs. Consequently, resistant bacteria and ARGs were still detected in receiving water bodies several kilometers downstream from discharge points. Hospital wastewater serves as a major source of pharmaceutical contamination and plays a critical role in the amplification of microbial resistance in the environment. These findings highlight the urgent need for advanced wastewater treatment technologies, strengthened antibiotic stewardship programs, and the integration of environmental and epidemiological surveillance within the One Health framework to curb the spread of antimicrobial resistance.
References
Ahmad, R., Liu, G., Santagata, R., Casazza, M., Xue, J., Khan, K., Nawab, J., Ulgiati, S., & Lega, M. (2019). LCA of hospital solid waste treatment alternatives in a developing country: The case of District Swat, Pakistan. Sustainability (Switzerland), 11(13). https://doi.org/10.3390/su11133501
Al Salah, D. M. M., Ngweme, G. N., Laffite, A., Otamonga, J. P., Mulaji, C., & Poté, J. (2020). Hospital wastewaters: A reservoir and source of clinically relevant bacteria and antibiotic resistant genes dissemination in urban river under tropical conditions. Ecotoxicology and Environmental Safety, 200(November 2019). https://doi.org/10.1016/j.ecoenv.2020.110767
Aleem, M., Azeem, A. R., Rahmatullah, S., Vohra, S., Nasir, S., & Andleeb, S. (2021). Prevalence of Bacteria and Antimicrobial Resistance Genes in Hospital Water and Surfaces. Cureus, 13(10). https://doi.org/10.7759/cureus.18738
Ali, M., Wang, W., Chaudhry, N., & Geng, Y. (2017). Hospital waste management in developing countries: A mini review. Waste Management and Research, 35(6), 581–592. https://doi.org/10.1177/0734242X17691344
Ariza-Heredia, E. J., & Chemaly, R. F. (2018). Update on infection control practices in cancer hospitals. CA: A Cancer Journal for Clinicians, 68(5), 340–355. https://doi.org/10.3322/caac.21462
Bakon, S. K., Mohamad, Z. A., Jamilan, M. A., Hashim, H., Kuman, M. Y., Shaharudin, R., Ahmad, N., & Muhamad, N. A. (2023). Prevalence of Antibiotic-Resistant Pathogenic Bacteria and Level of Antibiotic Residues in Hospital Effluents in Selangor, Malaysia: Protocol for a Cross-sectional Study. JMIR Research Protocols, 12(July 2022), 1–12. https://doi.org/10.2196/39022
Bansal, O. P. (2019). Antibiotics in hospital effluents and their impact on the antibiotics resistant bacteria and remediation of the antibiotics: A review. Network Pharmacology, 4(4), 6–30. www.iaees.orgArticle
Bilal, M., Mehmood, S., Rasheed, T., & Iqbal, H. M. N. (2020). Antibiotics traces in the aquatic environment: persistence and adverse environmental impact. Current Opinion in Environmental Science and Health, 13, 68–74. https://doi.org/10.1016/j.coesh.2019.11.005
Byrnes, N. A., Silvester, R., Cross, G., Weightman, A. J., Jones, D. L., & Kasprzyk-Hordern, B. (2025). Assessing the risk of antimicrobial resistance and potential environmental harm through national-scale surveillance of antimicrobials in hospital and community wastewater. Environment International, 202(February), 109606. https://doi.org/10.1016/j.envint.2025.109606
Chen, M., Liu, Y., Zhou, Y., Pei, Y., Qu, M., Lv, P., Zhang, J., Xu, X., Hu, Y., & Wang, Y. (2025). Deciphering antibiotic resistance genes and plasmids in pathogenic bacteria from 166 hospital effluents in Shanghai, China. Journal of Hazardous Materials, 483(November 2024). https://doi.org/10.1016/j.jhazmat.2024.136641
Chiemchaisri, W., Chiemchaisri, C., Hamjinda, N. S., Jeensalute, C., Buranapakdee, P., & Thamlikitkul, V. (2022). Field investigation of antibiotic removal efficacies in different hospital wastewater treatment processes in Thailand. Emerging Contaminants, 8, 329–339. https://doi.org/10.1016/j.emcon.2022.07.002
Chisholm, J. M., Zamani, R., Negm, A. M., Said, N., Abdel daiem, M. M., Dibaj, M., & Akrami, M. (2021). Sustainable waste management of medical waste in African developing countries: A narrative review. Waste Management and Research, 39(9), 1149–1163. https://doi.org/10.1177/0734242X211029175
Craun, G. F., & Calderon, R. L. (2006). Workshop summary: Estimating waterborne disease risks in the United States. Journal of Water and Health, 4(SUPPL. 2), 241–254. https://doi.org/10.2166/wh.2006.025
Delmonico, D. V. d. G., Santos, H. H. do., Pinheiro, M. A. P., de Castro, R., & de Souza, R. M. (2018). Waste management barriers in developing country hospitals: Case study and AHP analysis. Waste Management and Research, 36(1), 48–58. https://doi.org/10.1177/0734242x17739972
Ekwanzala, M. D., Lehutso, R. F., Kasonga, T. K., Dewar, J. B., & Momba, M. N. B. (2020). Environmental dissemination of selected antibiotics from hospital wastewater to the aquatic environment. Antibiotics, 9(7), 1–16. https://doi.org/10.3390/antibiotics9070431
Evoung Chandja, W. B., Onanga, R., Mbehang Nguema, P. P., Lendamba, R. W., Mouanga-Ndzime, Y., Mavoungou, J. F., & Godreuil, S. (2024). Emergence of Antibiotic Residues and Antibiotic-Resistant Bacteria in Hospital Wastewater: A Potential Route of Spread to African Streams and Rivers, a Review. Water (Switzerland), 16(22). https://doi.org/10.3390/w16223179
Friedman, N. D., Temkin, E., & Carmeli, Y. (2016). The negative impact of antibiotic resistance. Clinical Microbiology and Infection, 22(5), 416–422. https://doi.org/10.1016/j.cmi.2015.12.002
Gaşpar, C. M., Cziszter, L. T., Lăzărescu, C. F., Ţibru, I., Pentea, M., & Butnariu, M. (2021). Antibiotic resistance among escherichia coli isolates from hospital wastewater compared to community wastewater. Water (Switzerland), 13(23), 1–11. https://doi.org/10.3390/w13233449
Hamad, M. T. M. H., & El-Sesy, M. E. (2023). Adsorptive removal of levofloxacin and antibiotic resistance genes from hospital wastewater by nano-zero-valent iron and nano-copper using kinetic studies and response surface methodology. Bioresources and Bioprocessing, 10(1), 1–29. https://doi.org/10.1186/s40643-022-00616-1
Hawkshead, J. J. (2008). Hospital wastewater containing pharmaceutically active compounds and drug- resistant organisms: A source of environmental toxicity and increased antibiotic resistance. Journal of Residuals Science & Technology, 5(2), 51–60.
Kalasseril, S. G., Krishnan, R., Vattiringal, R. K., Paul, R., Mathew, P., & Pillai, D. (2020). Detection of New Delhi Metallo-β-lactamase 1 and Cephalosporin Resistance Genes Among Carbapenem-Resistant Enterobacteriaceae in Water Bodies Adjacent to Hospitals in India. Current Microbiology, 77(10), 2886–2895. https://doi.org/10.1007/s00284-020-02107-y
Krul, D., Negoseki, B. R. da S., Siqueira, A. C., Tomaz, A. P. de O., dos Santos, É. M., de Sousa, I., Vasconcelos, T. M., Marinho, I. C. R., Arend, L. N. V. S., Mesa, D., Conte, D., & Dalla-Costa, L. M. (2025). Spread of antimicrobial-resistant clones of the ESKAPEE group: From the clinical setting to hospital effluent. Science of the Total Environment, 973(November 2024). https://doi.org/10.1016/j.scitotenv.2025.179124
Lien, L. T. Q., Hoa, N. Q., Chuc, N. T. K., Thoa, N. T. M., Phuc, H. D., Diwan, V., Dat, N. T., Tamhankar, A. J., & Lundborg, C. S. (2016). Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-a one year study from Vietnam. International Journal of Environmental Research and Public Health, 13(6), 1–13. https://doi.org/10.3390/ijerph13060588
Petrovich, M. L., Zilberman, A., Kaplan, A., Eliraz, G. R., Wang, Y., Langenfeld, K., Duhaime, M., Wigginton, K., Poretsky, R., Avisar, D., & Wells, G. F. (2020). Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Frontiers in Microbiology, 11(February), 1–13. https://doi.org/10.3389/fmicb.2020.00153
Quttainah, M. A., & Singh, P. (2024). Barriers to Sustainable Healthcare Waste Management: A Grey Method Approach for Barrier Ranking. Sustainability (Switzerland), 16(24), 1–19. https://doi.org/10.3390/su162411285
Rahim, K., Nawaz, M. N., Almehmadi, M., Alsuwat, M. A., Liu, L., Yu, C., & Khan, S. S. (2024). Public health implications of antibiotic resistance in sewage water: an epidemiological perspective. Bioresources and Bioprocessing, 11(1). https://doi.org/10.1186/s40643-024-00807-y
Ruhnke, M., Arnold, R., & Gastmeier, P. (2014). Infection control issues in patients with haematological malignancies in the era of multidrug-resistant bacteria. The Lancet Oncology, 15(13), e606–e619. https://doi.org/10.1016/S1470-2045(14)70344-4
Silvester, R., Perry, W. B., Webster, G., Rushton, L., Baldwin, A., Pass, D. A., Byrnes, N. A., Farkas, K., Heginbothom, M., Craine, N., Cross, G., Kille, P., Kasprzyk-Hordern, B., Weightman, A. J., & Jones, D. L. (2025). Metagenomic profiling of hospital wastewater: A comprehensive national scale analysis of antimicrobial resistance genes and opportunistic pathogens. Journal of Infection, 90(6), 106503. https://doi.org/10.1016/j.jinf.2025.106503
Sinthuchai, D., Boontanon, S. K., Piyaviriyakul, P., Boontanon, N., Jindal, R., & Polprasert, C. (2021). Fate and mass loading of antibiotics in hospital and domestic wastewater treatment plants in Bangkok, Thailand. Journal of Water Sanitation and Hygiene for Development, 11(6), 959–971. https://doi.org/10.2166/washdev.2021.092
Talat, A., Bashir, Y., Khalil, N., Brown, C. L., Gupta, D., & Khan, A. U. (2025). Antimicrobial resistance transmission in the environmental settings through traditional and UV-enabled advanced wastewater treatment plants: a metagenomic insight. Environmental Microbiome, 20(1). https://doi.org/10.1186/s40793-024-00658-2
Yao, S., Ye, J., Yang, Q., Hu, Y., Zhang, T., Jiang, L., Munezero, S., Lin, K., & Cui, C. (2021). Occurrence and removal of antibiotics, antibiotic resistance genes, and bacterial communities in hospital wastewater. Environmental Science and Pollution Research, 28(40), 57321–57333. https://doi.org/10.1007/s11356-021-14735-3
Zhang, D., Peng, Y., Chan, C. L., On, H., Wai, H. K. F., Shekhawat, S. S., Gupta, A. B., Varshney, A. K., Chuanchuen, R., Zhou, X., Xia, Y., Liang, S., Fukuda, K., Medicherla, K. M., & Tun, H. M. (2021). Metagenomic Survey Reveals More Diverse and Abundant Antibiotic Resistance Genes in Municipal Wastewater Than Hospital Wastewater. Frontiers in Microbiology, 12(August). https://doi.org/10.3389/fmicb.2021.712843
Zhang, X. X., Zhang, T., & Fang, H. H. P. (2009). Antibiotic resistance genes in water environment. Applied Microbiology and Biotechnology, 82(3), 397–414. https://doi.org/10.1007/s00253-008-1829-z
Zhang, X., Yan, S., Chen, J., Tyagi, R. D., & Li, J. (2020). Physical, chemical, and biological impact (hazard) of hospital wastewater on environment: presence of pharmaceuticals, pathogens, and antibiotic-resistance genes. Current Developments in Biotechnology and Bioengineering Analgesics, 21(1), 1–9. https://www.golder.com/insights/block-caving-a-viable-alternative/
Copyright (c) 2025 Indonesian Journal of Global Health Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



