A Systematic Literature Review: PvK12 and PfK13 Gene Mutations as Markers of Resistance to Artemisin
Abstract
P. falciparum and P. vivax are among the most dangerous types of plasmodium , as they cause morbidity and mortality. Long-term use of Anti-Malaria Drugs (OAM) causes resistance. The purpose of this study was to determine the mutation of the pvk12 and pfk13 genes as a marker of resistance to artemisinin . This study used a systematic review method that was compiled based on the Preferred Reporting Items for Systematic Reviews and Meta Analyzes (PRISMA). The article search used five databases, namely PubMed, Google Scholar, BMC, Portal Garuda and the National Library (Perpusnas) of Indonesia. The keywords and boolean operators used in the literature search were "artemisinin", "resistance", "mutation", "gen", "plasmodium falciparum", "kelch 12", "kelch 13", "PvK12" PfK13" The inclusion criteria for this study were articles published at least in 2018 (the last 5 years). The exclusion criteria were paid articles, textbooks , articles systematic literature review , articles that use languages other than English and Indonesian. The results of a systematic review use 688 articles and finished of 10 articles showed that 8 articles found that there were no mutations in the pvk12 and pfk13 genes as markers of resistance to artemisinin and 2 articles found that there were mutations in the pvk12 and pfk13 genes as markers of resistance to artemisinin.
References
Anindita, V., Mutiara, H., & Mutiara, U. G. (2017). Mutasi gen kelch 13 dan resistensi Plasmodium falciparum terhadap obat antimalaria golongan artemisinin. Medula, 7(5), 149–153.
Chidimatembue, A., Svigel, S. S., Mayor, A., Aíde, P., Nhama, A., Nhamussua, L., Nhacolo, A., Bassat, Q., Salvador, C., Enosse, S., Saifodine, A., De Carvalho, E., Candrinho, B., Zulliger, R., Goldman, I., Udhayakumar, V., Lucchi, N. W., Halsey, E. S., & Macete, E. (2021). Molecular surveillance for polymorphisms associated with artemisinin-based combination therapy resistance in Plasmodium falciparum isolates collected in Mozambique, 2018. Malaria Journal, 20(1), 1–9. https://doi.org/10.1186/s12936-021-03930-9
Coppée, R., Jeffares, D. C., Miteva, M. A., Sabbagh, A., & Clain, J. (2019). Comparative structural and evolutionary analyses predict functional sites in the artemisinin resistance malaria protein K13. Scientific Reports, 9(1), 1–17. https://doi.org/10.1038/s41598-019-47034-6
Cowman, A. F., Healer, J., Marapana, D., & Marsh, K. (2016). Malaria: Biology and Disease. Cell, 167(3), 610–624. https://doi.org/10.1016/j.cell.2016.07.055
da Silva, C., Matias, D., Dias, B., Cancio, B., Silva, M., Viegas, R., Chivale, N., Luis, S., Salvador, C., Duarte, D., Arnaldo, P., Enosse, S., & Nogueira, F. (2023). Anti-malarial resistance in Mozambique: Absence of Plasmodium falciparum Kelch 13 (K13) propeller domain polymorphisms associated with resistance to artemisinins. Malaria Journal, 22(1), 1–6. https://doi.org/10.1186/s12936-023-04589-0
Ikegbunam, M., Ojo, J. A., Kokou, K., Morikwe, U., Nworu, C., Uba, C., Esimone, C., Velavan, T. P., & Ojurongbe, O. (2021). Absence of Plasmodium falciparum artemisinin resistance gene mutations eleven years after the adoption of artemisinin-based combination therapy in Nigeria. Malaria Journal, 20(1), 1–6. https://doi.org/10.1186/s12936-021-03968-9
Kemenkes RI. (2022a). Malaria.
Kemenkes RI. (2022b). Profil Kesehatan Indonesia 2021. In Kementrian Kesehatan Republik Indonesia.
Lê, H. G., Naw, H., Kang, J. M., Võ, T. C., Myint, M. K., Htun, Z. T., Lee, J., Yoo, W. G., Kim, T. S., Shin, H. J., & Na, B. K. (2022). Molecular Profiles of Multiple Antimalarial Drug Resistance Markers in Plasmodium falciparum and Plasmodium vivax in the Mandalay Region, Myanmar. Microorganisms, 10(10). https://doi.org/10.3390/microorganisms10102021
Ma, N., Zhang, Z., Liao, F., Jiang, T., & Tu, Y. (2020). The birth of artemisinin. Pharmacology & Therapeutics, 216, 107658. https://doi.org/https://doi.org/10.1016/j.pharmthera.2020.107658
Manirakiza, G., Kassaza, K., Taremwa, I. M., Bazira, J., & Byarugaba, F. (2022). Molecular identification and anti-malarial drug resistance profile of Plasmodium falciparum from patients attending Kisoro Hospital, southwestern Uganda. Malaria Journal, 21(1), 1–10. https://doi.org/10.1186/s12936-021-04023-3
Nesan, S. A., Santosa, B.-, & Kamarudin, M. (2023). Identifikasi Mutasi Gen kelch 13 Penanda Resistensi Pada Plasmodium falciparum Dengan Pengobatan ACT Setelah 3 Hari Di Manokwari Papua Barat. The Journal of Muhammadiyah Medical Laboratory Technologist, 6(1), 1. https://doi.org/10.30651/jmlt.v6i1.15840
Oboh, M. A., Ndiaye, D., Antony, H. A., Badiane, A. S., Singh, U. S., Ali, N. A., Bharti, P. K., & Das, A. (2018). Status of Artemisinin Resistance in Malaria Parasite Plasmodium falciparum from Molecular Analyses of the Kelch13 Gene in Southwestern Nigeria. BioMed Research International, 2018. https://doi.org/10.1155/2018/2305062
Popovici, J., & Ménard, D. (2015). Challenges in Antimalarial Drug Treatment for Vivax Malaria Control. Trends in Molecular Medicine, 21(12), 776–788. https://doi.org/10.1016/j.molmed.2015.10.004
Rahmasari, F. V., Asih, P. B. S., Dewayanti, F. K., Rotejanaprasert, C., Charunwatthana, P., Imwong, M., & Syafruddin, D. (2022). Drug resistance of Plasmodium falciparum and Plasmodium vivax isolates in Indonesia. Malaria Journal, 21(1), 1–32. https://doi.org/10.1186/s12936-022-04385-2
Si, W., Zhao, Y., Qin, X., Huang, Y., Yu, J., Liu, X., Li, Y., Yan, X., Zhang, Q., & Sun, J. (2023). What exactly does the PfK13 C580Y mutation in Plasmodium falciparum influence? Parasites & Vectors, 16(1), 1–11. https://doi.org/10.1186/s13071-023-06024-4
Sillehu&Utami. (2018). Pengenalan Diagnosis Malaria. In Forum Ilmiah Kesehatan (FORIKES) (Vol. 1, Issue 1).
Sitompul, A. J., & Asnaily, A. (2019). Identifikasi Mutasi Gen Pfatp6 Plasmodium Falciparum Penanda Resistensi Terhadap Artemisinin Di Provinsi Jambi. Midwifery Health Journal, 4(2). https://doi.org/10.52524/midwiferyhealthjournal.v4i2.140
Straimer, J., Gnädig, N. F., Witkowski, B., Amaratunga, C., Duru, V., Ramadani, A. P., Dacheux, M., Khim, N., Zhang, L., Lam, S., Gregory, P. D., Urnov, F. D., Mercereau-Puijalon, O., Benoit-Vical, F., Fairhurst, R. M., Ménard, D., & Fidock, D. A. (2015). K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science, 347(6220), 428–431. https://doi.org/10.1126/science.1260867
Tripura, R., Peto, T. J., Veugen, C. C., Nguon, C., Davoeung, C., James, N., Dhorda, M., Maude, R. J., Duanguppama, J., Patumrat, K., Imwong, M., Von Seidlein, L., Grobusch, M. P., White, N. J., & Dondorp, A. M. (2017). Submicroscopic Plasmodium prevalence in relation to malaria incidence in 20 villages in western Cambodia. Malaria Journal, 16(1), 1–12. https://doi.org/10.1186/s12936-017-1703-5
WHO. (2023). Malaria. https://www.who.int/news/item/25-10-2019-high-rates-of-unintended-pregnancies-linked-to-gaps-in-family-planning-services-new-who-study
Wiyani, S., Anwar, C., Handayani, D., & Ghiffary, A. (2021). Identifikasi Mutasi Gen Pvk12 Penanda Resistensi Plasmodium Vivax Terhadap Artemisinin Pada Penderita Malaria Suku Anak Dalam Di Kabupaten Batang Hari Provinsi Jambi. 3(2), 6.
Xie, S. C., Ralph, S. A., & Tilley, L. (2020). K13, the Cytostome, and Artemisinin Resistance. Trends in Parasitology, 36(6), 533–544. https://doi.org/10.1016/j.pt.2020.03.006
Zhao, Y., Wang, L., Soe, M. T., Aung, P. L., Wei, H., Liu, Z., Ma, T., Huang, Y., Menezes, L. J., Wang, Q., Kyaw, M. P., Nyunt, M. H., Cui, L., & Cao, Y. (2020). Molecular surveillance for drug resistance markers in Plasmodium vivax isolates from symptomatic and asymptomatic infections at the China-Myanmar border. Malaria Journal, 19(1), 1–12. https://doi.org/10.1186/s12936-020-03354-x
Copyright (c) 2025 Indonesian Journal of Global Health Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



