Nutriepigenetic Modulation of Hypertension Risk: A Review of the Literature

  • Maria Riastuti Iryaningrum Universitas Katolik Indonesia Atma Jaya Universitas Padjadjaran
  • Nanny Natalia Mulyani Soetedjo Universitas Padjadjaran
  • Noormarina Indraswari Universitas Padjadjaran
  • Rudi Supriyadi Universitas Padjadjaran
Keywords: hypertension, nutriepigenetics, risk factor

Abstract

This review aimed to investigate the interplay between dietary components and epigenetic modulation in the pathogenesis of hypertension. A comprehensive literature search encompassing all published primary and secondary research dating up to March 2024 was carried out on several electronic databases, including MEDLINE, EBSCO-Host, Science Direct, ProQuest, and Google Scholar. Individual genomes and dietary intake exhibit a bidirectional relationship, influencing the hypertension risk. Unhealthy dietary patterns can compromise DNA integrity through DNA methylation and histone acetylation, ultimately affecting both systolic and diastolic blood pressure. Dietary macronutrient composition (carbohydrates, lipids, and proteins) significantly alters the expression of specific microRNAs (miRNAs) known to regulate endothelial function and blood pressure homeostasis. Moreover, micronutrients (vitamin A, D, E, Zinc, Iodine, and Sodium) can exert epigenetic effects on blood pressure via receptor interactions, potentially modifying cardiovascular disease risk. Dietary imbalances in macro and micronutrients can epigenetically influence hypertension development. Addressing these deficiencies through targeted interventions may offer a complementary approach to hypertension treatment.

References

Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020 Apr;16(4):223–37.

Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet Lond Engl. 2017 Jan 7;389(10064):37–55.

Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-based Studies from 90 Countries. Circulation. 2016 Aug 8;134(6):441.

Biino G, Parati G, Concas MP, Adamo M, Angius A, Vaccargiu S, et al. Environmental and Genetic Contribution to Hypertension Prevalence: Data from an Epidemiological Survey on Sardinian Genetic Isolates. PLoS ONE. 2013 Mar 20;8(3):e59612.

Ahn SY, Gupta C. Genetic Programming of Hypertension. Front Pediatr. 2018 Jan 22;5:285.

Sun D, Zhou T, Li X, Heianza Y, Liang Z, Bray GA, et al. Genetic Susceptibility, Dietary Protein Intake, and Changes of Blood Pressure: The POUNDS Lost Trial. Hypertens Dallas Tex 1979. 2019 Dec;74(6):1460–7.

Fahed AC, El-Hage-Sleiman AKM, Farhat TI, Nemer GM. Diet, genetics, and disease: a focus on the middle East and north Africa region. J Nutr Metab. 2012;2012:109037.

Yang Z wen, Wei X biao, Fu B qi, Chen J yan, Yu D qing. Prevalence and Prognostic Significance of Malnutrition in Hypertensive Patients in a Community Setting. Front Nutr. 2022 Feb 23;9:822376.

Zhang HZ, Wang YH, Ge YL, Wang SY, Sun JY, Chen LL, et al. Obesity, malnutrition, and the prevalence and outcome of hypertension: Evidence from the National Health and Nutrition Examination Survey. Front Cardiovasc Med. 2023 Mar 2;10:1043491.

Lorenzo PM, Izquierdo AG, Rodriguez-Carnero G, Fernández-Pombo A, Iglesias A, Carreira MC, et al. Epigenetic Effects of Healthy Foods and Lifestyle Habits from the Southern European Atlantic Diet Pattern: A Narrative Review. Adv Nutr. 2022 Apr 14;13(5):1725–47.

Long Y, Mao C, Liu S, Tao Y, Xiao D. Epigenetic modifications in obesity‐associated diseases. MedComm. 2024 Feb 24;5(2):e496.

Suárez R, Chapela SP, Álvarez-Córdova L, Bautista-Valarezo E, Sarmiento-Andrade Y, Verde L, et al. Epigenetics in Obesity and Diabetes Mellitus: New Insights. Nutrients. 2023 Feb 4;15(4):811.

Kadayifci FZ, Zheng S, Pan YX. Molecular Mechanisms Underlying the Link between Diet and DNA Methylation. Int J Mol Sci. 2018 Dec 14;19(12):4055.

Marques EB, Souza KP de, Alvim-Silva T, Martins ILF, Pedro S, Scaramello CBV. Nutrition and Cardiovascular Diseases: Programming and Reprogramming. Int J Cardiovasc Sci. 2021 Mar 12;34:197–210.

Barrea L, Annunziata G, Bordoni L, Muscogiuri G, Colao A, Savastano S. Nutrigenetics—personalized nutrition in obesity and cardiovascular diseases. Int J Obes Suppl. 2020 Jul;10(1):1–13.

Elsamanoudy AZ, Neamat-Allah MAM, Mohammad FAH, Hassanien M, Nada HA. The role of nutrition related genes and nutrigenetics in understanding the pathogenesis of cancer. J Microsc Ultrastruct. 2016 Sep;4(3):115.

Laleh P, Yaser K, Abolfazl B, Shahriar A, Mohammad AJ, Nazila F, et al. Oleoylethanolamide increases the expression of PPAR-Α and reduces appetite and body weight in obese people: A clinical trial. Appetite. 2018 Sep 1;128:44–9.

Ray S. Micronutrient, Genome Stability and Degenerative Diseases: Nutrigenomics Concept of Disease Prevention – An Overview. Curr Res Nutr Food Sci J. 2014 Dec 30;2(3):159–64.

Milagro FI, Mansego ML, De Miguel C, Martínez JA. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med. 2013;34(4):782–812.

Wang B, Yang Q, Harris CL, Nelson ML, Busboom JR, Zhu MJ, et al. Nutrigenomic regulation of adipose tissue development - role of retinoic acid: A review. Meat Sci. 2016 Oct;120:100–6.

Moreno CL, Mobbs CV. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet. Mol Cell Endocrinol. 2017 Nov 5;455:33–40.

Magriplis E, Panagiotakos D, Kyrou I, Tsioufis C, Mitsopoulou AV, Karageorgou D, et al. Presence of Hypertension Is Reduced by Mediterranean Diet Adherence in All Individuals with a More Pronounced Effect in the Obese: The Hellenic National Nutrition and Health Survey (HNNHS). Nutrients. 2020 Mar 23;12(3):853.

Pérez-Gimeno G, Seral-Cortes M, Sabroso-Lasa S, Esteban LM, Widhalm K, Gottrand F, et al. Interplay of the Mediterranean diet and genetic hypertension risk on blood pressure in European adolescents: Findings from the HELENA study. Eur J Pediatr. 2024 Feb 13;

Liu F, He J, Gu D, Rao DC, Huang J, Hixson JE, et al. Associations of Endothelial System Genes With Blood Pressure Changes and Hypertension Incidence: The GenSalt Study. Am J Hypertens. 2015 Jun;28(6):780–8.

Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet. 2016 Oct;48(10):1171–84.

Li M, Wu Y, Ye L. The Role of Amino Acids in Endothelial Biology and Function. Cells. 2022 Apr 18;11(8):1372.

Carnagarin R, Nolde JM, Ward NC, Lugo‐Gavidia LM, Chan J, Robinson S, et al. Homocysteine predicts vascular target organ damage in hypertension and may serve as guidance for first‐line antihypertensive therapy. J Clin Hypertens. 2021 Jun 17;23(7):1380–9.

Zhang HP, Wang YH, Cao CJ, Yang XM, Ma SC, Han XB, et al. A regulatory circuit involving miR-143 and DNMT3a mediates vascular smooth muscle cell proliferation induced by homocysteine. Mol Med Rep. 2016 Jan;13(1):483–90.

Liu K, Xuekelati S, Zhang Y, Yin Y, Li Y, Chai R, et al. Expression levels of atherosclerosis-associated miR-143 and miR-145 in the plasma of patients with hyperhomocysteinaemia. BMC Cardiovasc Disord. 2017 Jun 20;17:163.

Shakiba E, Najafi F, Pasdar Y, Moradinazar M, Navabi J, Shakiba MH, et al. A prospective cohort study on the association between dietary fatty acids intake and risk of hypertension incident. Sci Rep. 2023 Nov 30;13(1):21112.

Barbalata T, Zhang L, Dulceanu MD, Stancu CS, Devaux Y, Sima AV, et al. Regulation of microRNAs in high-fat diet induced hyperlipidemic hamsters. Sci Rep. 2020 Nov 25;10(1):20549.

Li T, Yang G ming, Zhu Y, Wu Y, Chen X yun, Lan D, et al. Diabetes and hyperlipidemia induce dysfunction of VSMCs: contribution of the metabolic inflammation/miRNA pathway. Am J Physiol-Endocrinol Metab. 2015 Feb 15;308(4):E257–69.

Giussani M, Lieti G, Orlando A, Parati G, Genovesi S. Fructose Intake, Hypertension and Cardiometabolic Risk Factors in Children and Adolescents: From Pathophysiology to Clinical Aspects. A Narrative Review. Front Med [Internet]. 2022 Apr 12 [cited 2024 Mar 17];9. Available from: https://www.frontiersin.org/articles/10.3389/fmed.2022.792949

Sud N, Zhang H, Pan K, Cheng X, Cui J, Su Q. Aberrant expression of microRNA induced by high fructose diet: Implications in the pathogenesis of hyperlipidemia and hepatic insulin resistance. J Nutr Biochem. 2017 May;43:125–31.

Golonka RM, Cooper JK, Issa R, Devarasetty PP, Gokula V, Busken J, et al. Impact of Nutritional Epigenetics in Essential Hypertension: Targeting microRNAs in the Gut-Liver Axis. Curr Hypertens Rep. 2021;23(5):28.

Peker T, Boyraz B. The Relationship between Resistant Hypertension and Advanced Glycation End-Product Levels Measured Using the Skin Autofluorescence Method: A Case–Control Study. J Clin Med. 2023 Jan;12(20):6606.

Fuhr JC, Ramos MEK, Piovesan F, Renner L de O, Siqueira L de O. Relationship of advanced glycation end-products in hypertension in diabetic patients: a systematic review. J Bras Nefrol. 2022;44(4):557–72.

Gugliucci A. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases12. Adv Nutr. 2017 Jan 11;8(1):54–62.

Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol Metab. 2013 Dec 7;3(2):94–108.

Pachocka L, Włodarczyk M, Kłosiewicz-Latoszek L, Stolarska I. The association between the insertion/deletion polymorphism of the angiotensin converting enzyme gene and hypertension, as well as environmental, biochemical and anthropometric factors. Rocz Panstw Zakl Hig. 2020;71(2):207–14.

Zhang Y, Liu M, Zhou C, Zhang Z, He P, Li Q, et al. Inverse association between dietary vitamin A intake and new-onset hypertension. Clin Nutr Edinb Scotl. 2021 May;40(5):2868–75.

Usategui-Martín R, De Luis-Román DA, Fernández-Gómez JM, Ruiz-Mambrilla M, Pérez-Castrillón JL. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients. 2022 Jan 15;14(2):360.

Long MD, Sucheston-Campbell LE, Campbell MJ. Vitamin D Receptor and RXR in the Post-Genomic Era. J Cell Physiol. 2015 Apr;230(4):758–66.

Huang D, Guo Y, Li X, Pan M, Liu J, Zhang W, et al. Vitamin D3/VDR inhibits inflammation through NF-κB pathway accompanied by resisting apoptosis and inducing autophagy in abalone Haliotis discus hannai. Cell Biol Toxicol. 2023 Jun;39(3):885–906.

Haddad Kashani H, Seyed Hosseini E, Nikzad H, Soleimani A, Soleimani M, Tamadon MR, et al. The Effects of Vitamin D Supplementation on Signaling Pathway of Inflammation and Oxidative Stress in Diabetic Hemodialysis: A Randomized, Double-Blind, Placebo-Controlled Trial. Front Pharmacol. 2018 Feb 2;9:50.

Chen S, Sun Y, Agrawal DK. Vitamin D Deficiency and Essential Hypertension. J Am Soc Hypertens JASH. 2015 Nov;9(11):885–901.

Klashami ZN, Ahrabi NZ, Ahrabi YS, Hasanzad M, Asadi M, Amoli MM. The vitamin D receptor gene variants, ApaI, TaqI, BsmI, and FokI in diabetic foot ulcer and their association with oxidative stress. Mol Biol Rep. 2022 Sep;49(9):8627–39.

Swapna N, Vamsi UM, Usha G, Padma T. Risk conferred by FokI polymorphism of vitamin D receptor (VDR) gene for essential hypertension. Indian J Hum Genet. 2011 Sep;17(3):201–6.

Awasthi R, Manger PT, Khare RK. Fok I and Bsm I gene polymorphism of vitamin D receptor and essential hypertension: a mechanistic link. Clin Hypertens. 2023 Feb 15;29:5.

Zappe K, Pointner A, Switzeny OJ, Magnet U, Tomeva E, Heller J, et al. Counteraction of Oxidative Stress by Vitamin E Affects Epigenetic Regulation by Increasing Global Methylation and Gene Expression of MLH1 and DNMT1 Dose Dependently in Caco-2 Cells. Oxid Med Cell Longev. 2018 Mar 22;2018:3734250.

Switzeny OJ, Müllner E, Wagner KH, Brath H, Aumüller E, Haslberger AG. Vitamin and antioxidant rich diet increases MLH1 promoter DNA methylation in DMT2 subjects. Clin Epigenetics. 2012 Oct 1;4(1):19.

Ding N, Bonham EM, Hannon BE, Amick TR, Baylin SB, O’Hagan HM. Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage. J Mol Cell Biol. 2016 Jun;8(3):244–54.

Khajebishak Y, Alivand M, Faghfouri AH, Moludi J, Payahoo L. The effects of vitamins and dietary pattern on epigenetic modification of non-communicable diseases. Int J Vitam Nutr Res Int Z Vitam- Ernahrungsforschung J Int Vitaminol Nutr. 2023 Aug;93(4):362–77.

Brito S, Lee MG, Bin BH, Lee JS. Zinc and Its Transporters in Epigenetics. Mol Cells. 2020 Apr 1;43(4):323–30.

Williams CR, Mistry M, Cheriyan AM, Williams JM, Naraine MK, Ellis CL, et al. Zinc deficiency induces hypertension by promoting renal Na+ reabsorption. Am J Physiol - Ren Physiol. 2019 Apr 1;316(4):F646–53.

Tubek S. Role of zinc in regulation of arterial blood pressure and in the etiopathogenesis of arterial hypertension. Biol Trace Elem Res. 2007;117(1–3):39–51.

Kim MH, Choi MK. Seven dietary minerals (Ca, P, Mg, Fe, Zn, Cu, and Mn) and their relationship with blood pressure and blood lipids in healthy adults with self-selected diet. Biol Trace Elem Res. 2013 Jun;153(1–3):69–75.

Shen T, Zhao Q, Luo Y, Wang T. Investigating the Role of Zinc in Atherosclerosis: A Review. Biomolecules. 2022 Sep 23;12(10):1358.

Menon VU, Chellan G, Sundaram KR, Murthy S, Kumar H, Unnikrishnan AG, et al. Iodine status and its correlations with age, blood pressure, and thyroid volume in South Indian women above 35 years of age (Amrita Thyroid Survey). Indian J Endocrinol Metab. 2011;15(4):309–15.

Jeong S, Kim JY, Cho Y, Koh SB, Kim N, Choi JR. Genetically, Dietary Sodium Intake Is Causally Associated with Salt-Sensitive Hypertension Risk in a Community-Based Cohort Study: a Mendelian Randomization Approach. Curr Hypertens Rep. 2020 Jun 26;22(7):45.

Published
2025-04-30
How to Cite
Iryaningrum, M. R., Soetedjo, N. N. M., Indraswari, N., & Supriyadi, R. (2025). Nutriepigenetic Modulation of Hypertension Risk: A Review of the Literature. Indonesian Journal of Global Health Research, 7(2), 1173-1184. https://doi.org/10.37287/ijghr.v7i2.4774