Analysis of Acceptance of Mobile JKN Usage using the Utaut Method in the Working Area of BPJS Kesehatan Branch Mataram

  • I Made Adi Putra Asmara BPJS Kesehatan Branch Mataram
  • Saimi Saimi Universitas Qamarul Huda Badaruddin Bagu
Keywords: digital health adoption, mobile JKN, technology acceptance, utaut, use behavior

Abstract

The low adoption rate of the Mobile JKN application in the operational area of BPJS Kesehatan Mataram Branch represents a major obstacle. The application was developed to improve accessibility and efficiency in digital health services, yet its usage remains low.Objective: This study aims to analyze the factors influencing user acceptance of the Mobile JKN application using the Unified Theory of Acceptance and Use of Technology (UTAUT) framework.Methods:This quantitative study employed a cross-sectional study design. The study population included all users of the Mobile JKN application within the BPJS Kesehatan Mataram Branch operational area, with a sample of 399 respondents selected through simple random sampling. Primary data was gathered using structured questionnaires, while secondary data was sourced from BPJS Kesehatan records. The questionnaire was validated with a significance level (p-value < 0.05) and reliability tested with Cronbach’s Alpha (≥ 0.7). Data analysis was conducted using the Chi-square test for bivariate analysis and regression analysis for multivariate analysis.Results: The results revealed significant relationships between user behavior (use behavior) and performance expectancy (p < 0.001), effort expectancy (p < 0.001), facilitating conditions (p < 0.001), hedonic motivation (p < 0.001), and price value (p < 0.001). However, social influence (p = 0.361) and habit (p = 0.628) were not significantly associated. The results of the multinomial logistic regression test identify that effort expectancy is the dominant factor influencing user behavior.Conclusion: This study concludes that perceived economic value, ease of use, and infrastructure support are critical for enhancing the adoption rate of Mobile JKN. Policymakers need to strengthen user education, simplify the application interface, and enhance technological infrastructure as well as integration with information systems in healthcare facilities to promote broader utilization.

References

Adler-Milstein, J., Garg, A., Zhao, W., & Patel, V. (2021). A Survey Of Health Information Exchange Organizations In Advance Of A Nationwide Connectivity Framework. Health Affairs, 40(5), 736–744. https://doi.org/10.1377/hlthaff.2020.01497

Alshammari, W. M. G., Alshammari, F. M. M., & Alshammry, F. M. M. (2021). Factors Influencing the Adoption of E-Health Management among Saudi Citizens with Moderating Role of E-Health Literacy. Information Management and Business Review, 13(3(I)), 47–61. https://doi.org/10.22610/imbr.v13i3(I).3251

Aydin, G. (2023). Increasing mobile health application usage among Generation Z members: evidence from the UTAUT model. International Journal of Pharmaceutical and Healthcare Marketing, 17(3), 353–379. https://doi.org/10.1108/IJPHM-02-2021-0030

Boccardi, A., Wu, F., Pearlman, J., & Mhatre, A. (2022). Older Wheelchair Users Recommend Age-Friendly Design Improvements to a Wheelchair Maintenance App: Mixed Methods Development Study. JMIR Aging, 5(4), e39301. https://doi.org/10.2196/39301

Bults, M., van Leersum, C. M., Olthuis, T. J. J., Bekhuis, R. E. M., & den Ouden, M. E. M. (2022). Barriers and Drivers Regarding the Use of Mobile Health Apps Among Patients With Type 2 Diabetes Mellitus in the Netherlands: Explanatory Sequential Design Study. JMIR Diabetes, 7(1), e31451. https://doi.org/10.2196/31451

Cao, J., Kurata, K., Lim, Y., Sengoku, S., & Kodama, K. (2022). Social Acceptance of Mobile Health among Young Adults in Japan: An Extension of the UTAUT Model. International Journal of Environmental Research and Public Health, 19(22), 15156. https://doi.org/10.3390/ijerph192215156

Carranza, R., Díaz, E., Martín-Consuegra, D., & Fernández-Ferrín, P. (2020). PLS–SEM in business promotion strategies. A multigroup analysis of mobile coupon users using MICOM. Industrial Management & Data Systems, 120(12), 2349–2374. https://doi.org/10.1108/IMDS-12-2019-0726

Cheng, Y., Sharma, S., Sharma, P., & Kulathunga, K. (2020). Role of Personalization in Continuous Use Intention of Mobile News Apps in India: Extending the UTAUT2 Model. Information, 11(1), 33. https://doi.org/10.3390/info11010033

Dahlhausen, F., Zinner, M., Bieske, L., Ehlers, J. P., Boehme, P., & Fehring, L. (2021). Physicians’ Attitudes Toward Prescribable mHealth Apps and Implications for Adoption in Germany: Mixed Methods Study. JMIR MHealth and UHealth, 9(11), e33012. https://doi.org/10.2196/33012

Dixon, B. E., Holmgren, A. J., Adler-Milstein, J., & Grannis, S. J. (2022). Health Information Exchange and Interoperability. In Clinical Informatics Study Guide (pp. 203–219). Springer International Publishing. https://doi.org/10.1007/978-3-030-93765-2_14

Ferreira Barbosa, H., García-Fernández, J., Pedragosa, V., & Cepeda-Carrion, G. (2022). The use of fitness centre apps and its relation to customer satisfaction: a UTAUT2 perspective. International Journal of Sports Marketing and Sponsorship, 23(5), 966–985. https://doi.org/10.1108/IJSMS-01-2021-0010

Folkvord, F., Bol, N., Stazi, G., Peschke, L., & Lupiáñez-Villanueva, F. (2022). Preferences in the willingness to download a mobile health app: A discrete choice experiment in Spain, Germany and the Netherlands. https://doi.org/10.21203/rs.3.rs-1859416/v1

Gaber, H. R., & Hassan, L. M. (2022). Using mobile health apps during the Covid-19 pandemic in a developing country for business sustainability. Cogent Business & Management, 9(1). https://doi.org/10.1080/23311975.2022.2152648

Hagen, M. H., Hartvigsen, G., Jaccheri, L., & Papavlasopoulou, S. (2024). Digital Psychosocial Follow-up for Childhood Critical Illness Survivors: A Qualitative Interview Study on Health Professionals’ Perspectives. Scandinavian Journal of Child and Adolescent Psychiatry and Psychology, 12(1), 50–62. https://doi.org/10.2478/sjcapp-2024-0006

Handayanto, E., & Ambarwati, R. (2022). Continuance intention of mobile payment Using modified extending model of acceptance and use of technology. AMCA Journal of Science and Technology, 2(1), 1–9. https://doi.org/10.51773/ajst.v2i1.131

Holmgren, A. J., Everson, J., & Adler-Milstein, J. (2022). Association of Hospital Interoperable Data Sharing With Alternative Payment Model Participation. JAMA Health Forum, 3(2), e215199. https://doi.org/10.1001/jamahealthforum.2021.5199

Huang, Q., J Kumarasinghe, P., & Sakunthala Jayarathna, G. (2024). Navigating the Future: Exploring AI Adoption in Chinese Higher Education Through the Lens of Diffusion Theory. Interdisciplinary Journal of Information, Knowledge, and Management, 19, 009. https://doi.org/10.28945/5277

Hussein, S., Shiddieqy, H. A., & Mubarok, M. K. (2022). Analisis Manajemen Syariah Peran Aplikasi Mobile Jaminan Kesehatan Nasional (Jkn) Dalam Meningkatkan Kualitas Pelayanan Badan Penyelenggara Jaminan Sosial Kesehatan (Bpjs Kesehatan) Kantor Cabang Kota Bogor. Sahid Business Journal, 2(01), 79–90. https://doi.org/10.56406/sahidbusinessjournal.v2i01.81

Jang, M., Aavakare, M., Nikou, S., & Kim, S. (2021). The impact of literacy on intention to use digital technology for learning: A comparative study of Korea and Finland. Telecommunications Policy, 45(7), 102154. https://doi.org/10.1016/j.telpol.2021.102154

Kamillia, W. I., Syamsir, Wahyuni, S., Putri, I. F., & Nofirza, N. (2022). Implementasi Governansi Digital Melalui Aplikasi Jkn Mobile Di Kantor Bpjs Kesehatan Kota Bukittinggi. Prosiding Seminar Nasional Pendidikan, Bahasa, Sastra, Seni, Dan Budaya (Mateandrau), 1(2), 204–218.

Kwee, V., Istijanto, I., & Widjojo, H. (2022). Understanding the Determinants of m-Health Adoption in Indonesia. Jurnal Manajemen Teori Dan Terapan | Journal of Theory and Applied Management, 15(3), 408–422. https://doi.org/10.20473/jmtt.v15i3.40142

Mensah, I. K., Zeng, G., & Mwakapesa, D. S. (2022). The behavioral intention to adopt mobile health services: The moderating impact of mobile self-efficacy. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1020474

Moon, B. C., & Chang, H. (2014). Technology acceptance and adoption of innovative smartphone uses among hospital employees. Healthcare Informatics Research, 20(4), 304–312. https://doi.org/10.4258/hir.2014.20.4.304

Nikou, S., & Aavakare, M. (2021). An assessment of the interplay between literacy and digital Technology in Higher Education. Education and Information Technologies, 26(4), 3893–3915. https://doi.org/10.1007/s10639-021-10451-0

Okobi, E., Adigun, A. O., Ozobokeme, O., Emmanuel, O., Akinsanya, P. A., Okunromade, O., Okobi, O. E., Aiwuyo, H. O., Dick, A. I., Sadiq-Onilenla, R. A., & Ogunlana, F. A. (2023). Examining Disparities in Ownership and Use of Digital Health Technology Between Rural and Urban Adults in the US: An Analysis of the 2019 Health Information National Trends Survey. Cureus. https://doi.org/10.7759/cureus.38417

Patel, S. P., Sun, E., Reinhardt, A., Geevarghese, S., He, S., & Gazmararian, J. A. (2022). Social Determinants of Digital Health Adoption: Pilot Cross-sectional Survey. JMIR Formative Research, 6(12), e39647. https://doi.org/10.2196/39647

Rachmadi, D. G., Sunarto, D., & Mastan, I. A. (2016). Pengukuran Penerimaan Aplikasi Uwks Academic Smart Mobile Menggunakan Metode Utaut (Unified Theory of Acceptance and Use of Technology). Jurnal Sistem Informasi Universitas Dinamika, 5(11), 1689–1699.

Rahardja, U., Sigalingging, C. T., Putra, P. O. H., Nizar Hidayanto, A., & Phusavat, K. (2023). The Impact of Mobile Payment Application Design and Performance Attributes on Consumer Emotions and Continuance Intention. Sage Open, 13(1). https://doi.org/10.1177/21582440231151919

Rantanen, T., Järveläinen, E., & Leppälahti, T. (2021). Prisoners as Users of Digital Health Care and Social Welfare Services: A Finnish Attitude Survey. International Journal of Environmental Research and Public Health, 18(11), 5528. https://doi.org/10.3390/ijerph18115528

Saputra, E., & Misfariyan. (2013). Analisis Penerimaan Sistem Informasi Manajemen Rumah Sakit Umum Daerah Bangkinang Menggunakan Metode Technology Acceptance Model (Tam). Jurnal Sains Dan Teknologi Industri, 10(2), 1–7.

Schroeder, T., Dodds, L., Georgiou, A., Gewald, H., & Siette, J. (2023). Older Adults and New Technology: Mapping Review of the Factors Associated With Older Adults’ Intention to Adopt Digital Technologies. JMIR Aging, 6, e44564. https://doi.org/10.2196/44564

Semiz, B. B., & Semiz, T. (2021). Examining consumer use of mobile health applications by the extended UTAUT model. Business & Management Studies: An International Journal, 9(1), 267–281. https://doi.org/10.15295/bmij.v9i1.1773

Sharma, N., & Pandey, V. (2023). A meso-level exploration of citizen’s mGov adoption from SD logic perspective: the case of COVID-19 tracking app of India. Digital Policy, Regulation and Governance, 25(5), 505–521. https://doi.org/10.1108/DPRG-01-2023-0005

Sharmin, F., Sultan, M. T., Wang, D., Badulescu, A., & Li, B. (2021). Cultural Dimensions and Social Media Empowerment in Digital Era: Travel-Related Continuance Usage Intention. Sustainability, 13(19), 10820. https://doi.org/10.3390/su131910820

Sreypouv, C. (2020). Gamification: An Innovative Way to Enhance Health Behaviors for people Living with HIV/AIDs Via Mobile Health Appliacations. https://doi.org/10.28971/142020SC135

Sulistyawan, D. P., Yusuf, Y., & Machrunnisa. (2023). Inovasi Pelayanan Publik Pada Aplikasi Mobile JKN Dalam Meningkatkan Kualitas Pelayanan Publik di Kota Tangerang. Juan Jurnal Ilmu Administrasi Negara, II(2), 79–94.

Suzanto, B., & Sidharta, I. (2015). Pengukuran End-User Computing Satisfaction Atas Penggunaan Sistem Informasi Akademik. Jurnal Ekonomi, Bisnis & Entrepreneurship, 9(1), 16–28.

Venkatesh, V., Thong, J. Y. L., & Xin Xu. (2012). Consumer Acceptance dan Use Of Information Technology : Extending The Unified Theory Of Accpetance And Use Of Technology. MIS Quarterly, 36(1), 157–178.

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Information Systems, 17(5), 328–376. https://doi.org/10.17705/1jais.00428

Wang, J., Zhang, S., & Zhang, L. (2023). Intelligent Hog Farming Adoption Choices Using the Unified Theory of Acceptance and Use of Technology Model: Perspectives from China’s New Agricultural Managers. Agriculture, 13(11), 2067. https://doi.org/10.3390/agriculture13112067

Wichean, A., & Sungsanit, M. (2022). Factors Influencing the Intentions to Adopt Technology of the Broiler Farmer in Livestock Region 3, Thailand. Trends in Sciences, 19(1), 1707. https://doi.org/10.48048/tis.2022.1707

Wu, P., Zhang, R., Zhu, X., & Liu, M. (2022). Factors Influencing Continued Usage Behavior on Mobile Health Applications. Healthcare, 10(2), 208. https://doi.org/10.3390/healthcare10020208

Yu, C.-W., Chao, C.-M., Chang, C.-F., Chen, R.-J., Chen, P.-C., & Liu, Y.-X. (2021). Exploring Behavioral Intention to Use a Mobile Health Education Website: An Extension of the UTAUT 2 Model. Sage Open, 11(4). https://doi.org/10.1177/21582440211055721

Zelfia, Cangara, H., Pulubuhu, D. A. T., & Unde, A. A. (2024). Population Dynamics in Digital Communication Transformation: Kajang Community in Bulukumba Regency. International Journal of Religion, 5(10), 1980–1989. https://doi.org/10.61707/5dr9mp74.

Published
2025-04-01
How to Cite
Asmara, I. M. A. P., & Saimi, S. (2025). Analysis of Acceptance of Mobile JKN Usage using the Utaut Method in the Working Area of BPJS Kesehatan Branch Mataram. Indonesian Journal of Global Health Research, 7(2), 689-700. https://doi.org/10.37287/ijghr.v7i2.5817

Most read articles by the same author(s)