Implementation of A Fuzzy Logic for Early Detecting of A Pregnant Women Risk of Hypertension

  • Khairul Fuady Sekolah Tinggi Ilmu Kesehatan Muhammadiyah Aceh
  • Cut Mainy Handiana Sekolah Tinggi Ilmu Kesehatan Muhammadiyah Aceh
  • Eva Zulisa Sekolah Tinggi Ilmu Kesehatan Muhammadiyah Aceh https://orcid.org/0000-0003-1091-4108
Keywords: defuzzyfication, DBP, fuzzyfication, hypertension, SBP

Abstract

Hypertension is one of the diseases that can cause fatal effects to health, especially for pregnant women. Hypertension during pregnancy can cause serious effects such as pre-eclampsia and eclampsia which can threaten the lives of pregnant women and fetuses.  The purpose of this study is to determine the input and output variables related to hypertension during pregnancy and used for analysis using Tsukamoto FIS to determine risk factors for hypertension in pregnant women. This study uses input variables in the form of maternal age, systolic blood pressure (SBP), diastolic blood pressure (DBP), history of hypertension and genetic. Furthermore, it is analyzed using fuzzy logic through the process of fuzzyfication, inference engine and defuzzyfication. The examination of data samples of pregnant women with systolic and diastolic blood pressure categories included in the high category or potentially have hypertension. The Z value (defuzzyfication) shows that the output is in the category of severe hypertension so that the patient needs immediate treatment by medical personnel. The results showed that the risk of a mother having hypertension can be obtained through Tsukamoto FIS in the form of concrete values that can describe risk factors in the form of normal, hypertension and severe hypertension as well as recommended actions related to these risk factors.

References

American Hearth Association. (2021). Hypertension in pregnancy 2021.

Athiyah, U., Citra, F., Rosyadi, D. P., Saputra, R. A., Daffa Hekmatyar, H., Satrio, T. A., & Perdana, A. I. (2021). Diagnosa Resiko Penyakit Jantung Menggunakan Logika Fuzzy Metode Tsukamoto. Infokes, 11(1), 31–40.

Barbounaki, S. G., Sarantaki, A., & Gourounti, K. (2021). Fuzzy logic intelligent systems and methods in midwifery and obstetrics. Acta Informatica Medica, 29(3), 210–215. https://doi.org/10.5455/aim.2021.29.210-215

Bello, N. A., Zhou, H., Cheetham, T. C., Miller, E., Getahun, D. T., Fassett, M. J., & Reynolds, K. (2021). Prevalence of Hypertension among Pregnant Women When Using the 2017 American College of Cardiology/American Heart Association Blood Pressure Guidelines and Association with Maternal and Fetal Outcomes. JAMA Network Open, 4(3), 1–12. https://doi.org/10.1001/jamanetworkopen.2021.3808

Braunthal, S., & Brateanu, A. (2019). Hypertension in pregnancy: Pathophysiology and treatment. SAGE Open Medicine, 7, 1–15. https://doi.org/10.1177/2050312119843700

Cohen, Y., Gutvirtz, G., Avnon, T., & Sheiner, E. (2024). Chronic Hypertension in Pregnancy and Placenta-Mediated Complications Regardless of Preeclampsia. Journal of Clinical Medicine, 13(4). https://doi.org/10.3390/jcm13041111

Daivan, F., Saripurna, D., & Siambaton, M. Z. (2024). E-Diagnosis Gangguan Kecemasan Menyeluruh Menggunakan Fuzzy Inference System (FIS) Tsukamoto. Hello World Jurnal Ilmu Komputer, 3(1), 9–27. https://doi.org/10.56211/helloworld.v3i1.513

Dayan, N., Kaur, A., Elharram, M., Rossi, A. M., & Pilote, L. (2018). Impact of preeclampsia on long-term cognitive function. Hypertension, 72(6), 1374–1380. https://doi.org/10.1161/HYPERTENSIONAHA.118.11320

Dinas Kesehatan Provinsi Aceh. (2023). Profil Kesehatan Aceh 2022. In Profil Kesehatan Aceh 2022.

Hakim, M. F. Al, Fajriati, N., & Pratama, R. N. (2023). Heart Disease Diagnosis Using Tsukamoto Fuzzy Method. Journal of Advances in Information Systems and Technology, 5(1), 12–22. https://doi.org/10.15294/jaist.v5i1.67565

Iryaningrum, M. et al. (2023). Hypertension in pregnancy. Damianus Journal of Medicine, 22(3), 249–258. https://doi.org/10.1055/s-0028-1123979

Kaimmudin, L., Pangemanan, D., & Bidjuni, H. (2018). Hubungan Usia Ibu Saat Hamil Dengan Kejadian Hipertensi Di RSU GMIM Pancaran Kasih Manado. E-Journal Keperawatan (e-Kp), 1(6), 1–5.

Khairul Fuady, & Zulisa, E. (2023). Fuzzy Iference System for The Risks Pregnancy Detection. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 14(1), 28–42. https://doi.org/10.31849/digitalzone.v14i1.12423

Lieskusumastuti, A. D., Hanifah, L., Setyorini, C., Delimasari, T. H., & Handayani, R. T. (2021). The Risks of Hypertension in Pregnant Women: A Meta-Analysis. International Conference on Public Health, 721–734. https://doi.org/10.26911/icphmaternal.fp.08.2021.10

Low, T. T., Guron, N., Ducas, R., Yamamura, K., Charla, P., Granton, J., & Silversides, C. K. (2021). Pulmonary arterial hypertension in pregnancy—a systematic review of outcomes in the modern era. Pulmonary Circulation, 11(2). https://doi.org/10.1177/20458940211013671

Luger, Richard K., Kight, B. P. (2022). Hypertension in pregnancy. StatPearls - NCBI Bookshelf, 54(APR.), 269–270.

Mazenda, G. et al. (2014). Implementasi Fuzzy Inference System (FIS) Metode Tsukamoto Pada Sistem Pendukung Keputusan Penentuan Kualitas Air Sungai. Journal of Environmental Engineering & Sustainable Technology, 1(2), 92–103. https://doi.org/10.31315/telematika.v10i2.281

Mustafa, R., Ahmed, S., Gupta, A., & Venuto, R. C. (2012). A comprehensive review of hypertension in pregnancy. Journal of Pregnancy, 2012. https://doi.org/10.1155/2012/105918

Naseer, I., Khan, B. S., Saqib, S., Tahir, S. N., Tariq, S., & Akhter, M. S. (2020). Diagnosis Heart Disease Using Mamdani FuzzyInference Expert System. EAI Endorsed Transactions on Scalable Information Systems, 7(26), 1–9. https://doi.org/10.4108/eai.15-1-2020.162736

Radparvar, A. A., Vani, K., Fiori, K., Gupta, S., Chavez, P., Fisher, M., Sharma, G., Wolfe, D., & Bortnick, A. E. (2024). Hypertensive Disorders of Pregnancy: Innovative Management Strategies. JACC: Advances, 3(3). https://doi.org/10.1016/j.jacadv.2024.100864

Roberts, L., Davis, G. K., & Homer, C. S. E. (2019). Depression, Anxiety, and Post-traumatic Stress Disorder Following a Hypertensive Disorder of Pregnancy: A Narrative Literature Review. Frontiers in Cardiovascular Medicine, 6(147), 1–14. https://doi.org/10.3389/fcvm.2019.00147

Schwartz, G. L., & Sheps, S. G. (2020). A review of the Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Current Opinion in Cardiology, 14(2), 161–168. https://doi.org/10.1097/00001573-199903000-00014

Setyono, A., & Aeni, S. N. (2018). Development of decision support system for ordering goods using fuzzy Tsukamoto. International Journal of Electrical and Computer Engineering, 8(2), 1182–1193. https://doi.org/10.11591/ijece.v8i2.pp1182-1193

Shofi Jasmine, Ira Marti Ayu, Gisely Vionalita, & Intan Silviana. (2022). Hipertensi Dalam Kehamilan Pada Ibu Hamil Trimester 3 Di Rumah Sakit Ibu Dan Anak Cinta Kasih Tahun 2021. MOTORIK Jurnal Ilmu Kesehatan, 17(2), 101–107. https://doi.org/10.61902/motorik.v17i2.357

Simanjuntak, V. et al. (2024). Kadar Placental Growth Factor ( PlGF ) dengan Tekanan Darah pada Ibu Hamil Hipertensi. Jurnal Ilmiah Kesehatan: JIKA, 6(1), 139–146.

Situmorang, E., & Rindari, F. (2019). Decision Support System For Selection Of The Best Doctors In Sari Mutiara Hospital Using Fuzzy Tsukamoto Method. Jurnal Teknik Informatika C.I.T, 11(2), 45–50. www.medikom.iocspublisher.org/index.php/JTI

Yuli Endra, R., & Agus Saputra, G. (2022). Implementasi Fuzzy Inference System (Fis) Metode Tsukamoto Untuk Monitoring Kualitas Udara. Jurnal Komputasi, 10(1), 23–34. https://doi.org/10.23960/komputasi.v10i1.2962

Yuriah, S., & Kartini, F. (2022). Factors Affecting With the Prevalence of Hypertension in Pregnancy: Scoping Review. PLACENTUM: Jurnal Ilmiah Kesehatan Dan Aplikasinya, 10(1), 1. https://doi.org/10.20961/placentum.v10i1.54822.

Published
2024-09-02
How to Cite
Fuady, K., Handiana, C. M., & Zulisa, E. (2024). Implementation of A Fuzzy Logic for Early Detecting of A Pregnant Women Risk of Hypertension. Indonesian Journal of Global Health Research, 7(1), 9-20. https://doi.org/10.37287/ijghr.v7i1.3969