Identification of Potential Regulatory Genes Associated with Chondrosarcoma using Integrated Bioinformatic Analysis

  • Mohamad Dimas Ismail Ambon City Health Office
  • Firman Hasan Faculty of Medicine, Universitas Tadulako
  • Wijaya Johanes Chendra Siloam Hospital Ambon
Keywords: bioinformatic analysis, chondrosarcoma, differentially expressed genes


Identifying the novel critical regulatory genes in the molecular processes driving chondrosarcoma (CS) growth is essential for establishing targeted therapeutic approaches. Objective: This study aims to investigate the core regulatory genes implicated in the molecular mechanisms of CS progression. Method: We conducted a dataset search from the Gene Expression Omnibus (GEO) database using “chondrosarcoma” as the keyword. DAVID database was utilised to obtain the Gene Ontology (GO) and pathways enrichment of DEGs. Interaction between the proteins network was constructed using the STRING database and visualised by Cytoscape (3.10.0) software. Subsequently, the essential genes were identified as the intersected genes from cytoHubb and MCODE plugin. Furthermore, we analysed these genes based on their expression and survival using the UALCAN database. Additionally, the cBioPortal database and Tumor Immune Estimation Resource (TIMER) were utilised to obtain the genetic alteration and immune cell infiltration associated with the hub genes. Moreover, the NetworkAnalyst database was deployed to construct the interactions between microRNAs (miRNAs) and the hub genes. Results: 114 common DEGs were found between two datasets (GSE30844 and GSE48418). These genes are predominantly associated with Focal Adhesion. Seven hub genes were identified which include CCND1, CDK6, CAV1, MLC1, SQSTM1, GAPDH, and FOXO1. The validation analysis revealed a diagnostic value amidst the hub genes, particularly CDK6 and FOXO1 genes associated with unfavorable outcome in sarcoma patients. The miRNAs analysis demonstrated that miR-15a-5p has a potential binding with CDK6 and FOXO1. Conclusions: This study revealed seven core genes and indicated a putative regulatory molecule associated with CS progression. Taken together, this study's findings suggest that the CDK6, FOXO1, and miR-15a-5p have a potential role in regulating CS progression.


Amer, K. M., Munn, M., Congiusta, D., Abraham, J. A., & Basu Mallick, A. (2020). Survival and Prognosis of Chondrosarcoma Subtypes: SEER Database Analysis. Journal of Orthopaedic Research, 38(2), 311–319.

Apley, G. (2019). Apley’s System of Orthopaedics and Fractures (10th ed.). Hodder Arnold.

Bader, G. D., & Hogue, C. W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4(2), 1–25.

Barretina, J., Taylor, B. S., Banerji, S., Ramos, A. H., Lagos-Quintana, M., DeCarolis, P. L., Shah, K., Socci, N. D., Weir, B. A., Ho, A., Chiang, D. Y., Reva, B., Mermel, C. H., Getz, G., Antipin, Y., Beroukhim, R., Major, J. E., Hatton, C., Nicoletti, R., … Singer, S. (2010). Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nature Genetics, 42(8), 715–721.

Bartel, D. P. (2009). MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136(2), 215–233.

Casimiro, M. C., Crosariol, M., Loro, E., Li, Z., & Pestell, R. G. (2012). Cyclins and Cell Cycle Control in Cancer and Disease. Genes & Cancer, 3(11–12), 649–657.

Chandrashekar, D. S., Karthikeyan, S. K., Korla, P. K., Patel, H., Shovon, A. R., Athar, M., Netto, G. J., Qin, Z. S., Kumar, S., Manne, U., Creighton, C. J., & Varambally, S. (2022). UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 25, 18–27.

Chen, C., Tian, A., Zhou, H., Zhang, X., Liu, Z., & Ma, X. (2020). Upregulation of miR-211 Promotes Chondrosarcoma Development via Targeting Tumor Suppressor VHL. OncoTargets and Therapy, Volume 13, 2935–2943.

Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., & Lin, C.-Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(S4), 1–6.

Chow, W. A. (2018). Chondrosarcoma: Biology, genetics, and epigenetics. F1000Research, 7, 1–7.

Dai, X., Ma, W., He, X., & Jha, R. K. (2011). Review of therapeutic strategies for osteosarcoma,. Med Sci Monit, 177–190.

Dang, F., Nie, L., & Wei, W. (2021). Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death & Differentiation, 28(2), 427–438.

Debnath, J., Gammoh, N., & Ryan, K. M. (2023). Autophagy and autophagy-related pathways in cancer. Nature Reviews Molecular Cell Biology, 24(8), 560–575.

Farhan, M., Wang, H., Gaur, U., Little, P. J., Xu, J., & Zheng, W. (2017). FOXO Signaling Pathways as Therapeutic Targets in Cancer. International Journal of Biological Sciences, 13(7), 815–827.

Fassl, A., Geng, Y., & Sicinski, P. (2022). CDK4 and CDK6 kinases: From basic science to cancer therapy. Science, 375(6577), 1–16.

Galoian, K., Guettouche, T., Issac, B., Navarro, L., & Temple, H. T. (2014). Lost miRNA surveillance of Notch, IGFR pathway—Road to sarcomagenesis. Tumor Biology, 35(1), 483–492.

Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N. (2013). Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Science Signaling, 6(269), 1–18.

Gheghiani, L., Shang, S., & Fu, Z. (2020). Targeting the PLK1-FOXO1 pathway as a novel therapeutic approach for treating advanced prostate cancer. Scientific Reports, 10(1), 1–10.

Guan, H., Tan, P., Xie, L., Mi, B., Fang, Z., Li, J., Yue, J., Liao, H., & Li, F. (2015). FOXO1 inhibits osteosarcoma oncogenesis via Wnt/β-catenin pathway suppression. Oncogenesis, 4(9), 1–11.

Han, G. H., Chay, D. B., Nam, S., Cho, H., Chung, J.-Y., & Kim, J.-H. (2019). Prognostic implications of forkhead box protein O1 (FOXO1) and paired box 3 (PAX3) in epithelial ovarian cancer. BMC Cancer, 19(1), 1–9.

Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12(1), 31–46.

Hornsveld, M., Dansen, T. B., Derksen, P. W., & Burgering, B. M. T. (2018). Re-evaluating the role of FOXOs in cancer. Seminars in Cancer Biology, 50, 90–100.

Hsu, J. Y., Seligson, N. D., Hays, J. L., Miles, W. O., & Chen, J. L. (2022). Clinical Utility of CDK4/6 Inhibitors in Sarcoma: Successes and Future Challenges. JCO Precision Oncology, 6, 1–9.

Hua, K.-C., & Hu, Y.-C. (2020). Treatment method and prognostic factors of chondrosarcoma: Based on Surveillance, Epidemiology, and End Results (SEER) database. Translational Cancer Research, 9(7), 4250–4266.

Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.

Iorio, M. V., & Croce, C. M. (2009). MicroRNAs in Cancer: Small Molecules With a Huge Impact. Journal of Clinical Oncology, 27(34), 5848–5856.

Iorio, M. V., & Croce, C. M. (2012). MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Molecular Medicine, 4(3), 143–159.

Jami, S. A., Jiandang, S., Hao, L. C., Xi, Z., Wenqi, Y., & Zhou, Z. (2021). Comparison of chondrosarcoma cases: Current clinical situations among institutions. International Journal of Health Sciences, 15(4), 42–48.

Jiménez‐Santos, M. J., García‐Martín, S., Fustero‐Torre, C., Di Domenico, T., Gómez‐López, G., & Al‐Shahrour, F. (2022). Bioinformatics roadmap for therapy selection in cancer genomics. Molecular Oncology, 16(21), 3881–3908.

Jiramongkol, Y., & Lam, E. W.-F. (2020). FOXO transcription factor family in cancer and metastasis. Cancer and Metastasis Reviews, 39(3), 681–709.

Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. 28(1), 27–30.

Li, F., Xu, J., Zhu, Y., Sun, L., & Zhou, R. (2020). Analysis of Cells Proliferation and MicroRNAs Expression Profile in Human Chondrosarcoma SW1353 Cells Exposed to Iodine-125 Seeds Irradiation. Dose-Response, 18(2), 1–9.

Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., Li, B., & Liu, X. S. (2017). TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Research, 77(21), 108–110.

Li, Z., Zhu, Z., Wang, Y., Wang, Y., Li, W., Wang, Z., Zhou, X., & Bao, Y. (2021). Hsa‑miR‑15a‑5p inhibits colon cell carcinoma via targeting CCND1. Molecular Medicine Reports, 24(4), 1–7.

Min, L., Choy, E., Pollock, R. E., Tu, C., Hornicek, F., & Duan, Z. (2017). Autophagy as a potential target for sarcoma treatment. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1868(1), 40–50.

Mulcahy Levy, J. M., & Thorburn, A. (2020). Autophagy in cancer: Moving from understanding mechanism to improving therapy responses in patients. Cell Death & Differentiation, 27(3), 843–857.

Nacev, B. A., Sanchez-Vega, F., Smith, S. A., Antonescu, C. R., Rosenbaum, E., Shi, H., Tang, C., Socci, N. D., Rana, S., Gularte-Mérida, R., Zehir, A., Gounder, M. M., Bowler, T. G., Luthra, A., Jadeja, B., Okada, A., Strong, J. A., Stoller, J., Chan, J. E., … Tap, W. D. (2022). Clinical sequencing of soft tissue and bone sarcomas delineates diverse genomic landscapes and potential therapeutic targets. Nature Communications, 13(1), 1–13.

Nguyen, H.-M., Gaikwad, S., Oladejo, M., Agrawal, M. Y., Srivastava, S. K., & Wood, L. M. (2023). Interferon stimulated gene 15 (ISG15) in cancer: An update. Cancer Letters, 556, 1–10.

Ni, Y., Yang, Y., Ran, J., Zhang, L., Yao, M., Liu, Z., & Zhang, L. (2020). MiR-15a-5p inhibits metastasis and lipid metabolism by suppressing histone acetylation in lung cancer. Free Radical Biology and Medicine, 161, 150–162.

Pansuriya, T. C., Van Eijk, R., d’Adamo, P., Van Ruler, M. A. J. H., Kuijjer, M. L., Oosting, J., Cleton-Jansen, A.-M., Van Oosterwijk, J. G., Verbeke, S. L. J., Meijer, D., Van Wezel, T., Nord, K. H., Sangiorgi, L., Toker, B., Liegl-Atzwanger, B., San-Julian, M., Sciot, R., Limaye, N., Kindblom, L.-G., … Bovée, J. V. M. G. (2011). Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nature Genetics, 43(12), 1256–1261.

Patergnani, S., Missiroli, S., Morciano, G., Perrone, M., Mantovani, C. M., Anania, G., Fiorica, F., Pinton, P., & Giorgi, C. (2021). Understanding the Role of Autophagy in Cancer Formation and Progression Is a Real Opportunity to Treat and Cure Human Cancers. Cancers, 13(22), 1–25.

Polychronidou, G., Karavasilis, V., Pollack, S. M., Huang, P. H., Lee, A., & Jones, R. L. (2017). Novel therapeutic approaches in chondrosarcoma. Future Oncology, 13(7), 637–648.

Quan, X., Zhao, C., Gao, Z., Zhang, Y., Zhao, R., Wang, J., & Zhang, Q. (2021). DDX10 and BYSL as the potential targets of chondrosarcoma and glioma. Medicine, 100(46), 1–10.

Reumann, S., Shogren, K. L., Yaszemski, M. J., & Maran, A. (2016). Inhibition of Autophagy Increases 2-Methoxyestradiol-Induced Cytotoxicity in SW1353 Chondrosarcoma Cells: I NHIBITION OF A UTOPHAGY I NCREASES 2-M ETHOXYESTRADIOL -I NDUCED C YTOTOXICITY. Journal of Cellular Biochemistry, 117(3), 751–759.

Scotlandi, K., Hattinger, C. M., Pellegrini, E., Gambarotti, M., & Serra, M. (2020). Genomics and Therapeutic Vulnerabilities of Primary Bone Tumors. Cells, 9(4), 1–18.

Sherr, C. J., Beach, D., & Shapiro, G. I. (2016). Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discovery, 6(4), 353–367.

Suyasa, I., Nugraha, G., & Eka Wiratnaya, I. (2019). Primary Malignant Bone Tumor Chondrosarcoma of The Sternum. Jurnal Medika Udayana, 8(10), 1–4.

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., Kuhn, M., Bork, P., Jensen, L. J., & von Mering, C. (2015). STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), 447–452.

Tlemsani, C., Larousserie, F., De Percin, S., Audard, V., Hadjadj, D., Chen, J., Biau, D., Anract, P., Terris, B., Goldwasser, F., Pasmant, E., & Boudou-Rouquette, P. (2023). Biology and Management of High-Grade Chondrosarcoma: An Update on Targets and Treatment Options. International Journal of Molecular Sciences, 24(2), 1–15.

Urdinez, J., Boro, A., Mazumdar, A., Arlt, M. J., Muff, R., Botter, S. M., Bode‐Lesniewska, B., Fuchs, B., Snedeker, J. G., & Gvozdenovic, A. (2020). The miR‐143/145 Cluster, a Novel Diagnostic Biomarker in Chondrosarcoma, Acts as a Tumor Suppressor and Directly Inhibits Fascin‐1. Journal of Bone and Mineral Research, 35(6), 1077–1091.

Van Rooij, E., & Olson, E. N. (2012). MicroRNA therapeutics for cardiovascular disease: Opportunities and obstacles. Nature Reviews Drug Discovery, 11(11), 860–872.

Wu, T., Cao, H., Liu, L., & Peng, K. (2020). Identification of Key Genes and Pathways for Enchondromas by Bioinformatics Analysis. Dose-Response, 18(1), 1–8.

Xia, J., Benner, M. J., & Hancock, R. E. W. (2014). NetworkAnalyst—Integrative approaches for protein–protein interaction network analysis and visual exploration. Nucleic Acids Research, 42(1), 167–174.

Yuan, Y., Qin, H., Li, H., Shi, W., Bao, L., Xu, S., Yin, J., & Zheng, L. (2023). The Functional Roles of ISG15/ISGylation in Cancer. Molecules, 28(3), 1–12.

Zhou, M.-J., Chen, F.-Z., Chen, H.-C., Wan, X.-X., Zhou, X., Fang, Q., & Zhang, D.-Z. (2017). ISG15 inhibits cancer cell growth and promotes apoptosis. International Journal of Molecular Medicine, 39(2), 446–452.

Zhu, G. G., Nafa, K., Agaram, N., Zehir, A., Benayed, R., Sadowska, J., Borsu, L., Kelly, C., Tap, W. D., Fabbri, N., Athanasian, E., Boland, P. J., Healey, J. H., Berger, M. F., Ladanyi, M., & Hameed, M. (2020). Genomic Profiling Identifies Association of IDH1/IDH2 Mutation with Longer Relapse-Free and Metastasis-Free Survival in High-Grade Chondrosarcoma. Clinical Cancer Research, 26(2), 419–427.

Zulfariska, N., Martadiani, E. D., Wiratnaya, I. G. E., Ambong, H. A., & Sumadi, I. W. J. (2020). Variasi kondrosarkoma pada usia muda: Serial kasus. Medicina, 51(3), 567–570.

How to Cite
Ismail, M., Hasan, F., & Chendra, W. (2023). Identification of Potential Regulatory Genes Associated with Chondrosarcoma using Integrated Bioinformatic Analysis. Indonesian Journal of Global Health Research, 5(4), 673-694.