A Recent Update: Molecular Mechanism of Kombucha as A Probiotic for Obesity Management

  • Zulfia Rosyidatun Nisa Nutrition Sciences of Postgraduate Program, Universitas Sebelas Maret
  • Sinu Andhi Jusup Faculty of Medicine, Universitas Sebelas Maret
  • Ratih Dewi Yudhani Faculty of Medicine, Universitas Sebelas Maret
Keywords: kombucha, obesity, probiotics


The prevalence of obesity has continued to increase in the past decade which has an impact on several metabolic disorders in the body. Various efforts are made to reduce and overcome the effects of obesity such as pharmacological therapy.  In addition, using natural ingredients such as probiotics is optimized to minimize the effects caused. The balance of gut microbiota has an important role in helping to improve dysbiosis, inflammation, and fatty liver in obesity. Method: This review used the scoping review necessary to collect and summarize scientific data as well as guide future investigations with the provision that articles are up to the last 10 years (2014) for kombucha as a drink rich in probiotics that could have potential as a natural therapy for obesity management. Results: A total of 244 articles were collected and 11 articles met the inclusion criteria. Conclusion: kombucha has beneficial effects and has the potential to improve obesity conditions from a variety of mechanisms.


Abdelaal, M., le Roux, C. W., & Docherty, N. G. (2017). Morbidity and mortality associated with obesity. Annals of Translational Medicine, 5(7), 1–12. https://doi.org/10.21037/atm.2017.03.107
Allain, T., Chaouch, S., Thomas, M., Vallée, I., Buret, A. G., Langella, P., Grellier, P., Polack, B., Bermúdez-Humarán, L. G., & Florent, I. (2018). Bile-Salt-Hydrolases from the probiotic strain Lactobacillus johnsonii La1 mediate anti-giardial activity in vitro and in vivo. Frontiers in Microbiology, 8(JAN). https://doi.org/10.3389/fmicb.2017.02707
Alruwaili, H., Dehestani, B., & Roux, C. W. (2021). Clinical Pharmacology : Advances and Applications Clinical Impact of Liraglutide as a Treatment of Obesity. 53–60.
Anand, S., & Mande, S. S. (2018). Diet, microbiota and gut-lung connection. Frontiers in Microbiology, 9(SEP). https://doi.org/10.3389/fmicb.2018.02147
Bellassoued, K., Ghrab, F., Makni-Ayadi, F., Van Pelt, J., Elfeki, A., & Ammar, E. (2015). Protective effect of kombucha on rats fed a hypercholesterolemic diet is mediated by its antioxidant activity. Pharmaceutical Biology, 53(11), 1699–1709. https://doi.org/10.3109/13880209.2014.1001408
Breton, J., Galmiche, M., & Déchelotte, P. (2022). Dysbiotic Gut Bacteria in Obesity: An Overview of the Metabolic Mechanisms and Therapeutic Perspectives of Next-Generation Probiotics. Microorganisms, 10(2). https://doi.org/10.3390/microorganisms10020452
Buttó, L. F., & Haller, D. (2016). Dysbiosis in intestinal inflammation: Cause or consequence. International Journal of Medical Microbiology, 306(5), 302–309. https://doi.org/10.1016/j.ijmm.2016.02.010
Byrne, C. D., & Targher, G. (2015). NAFLD: A multisystem disease. Journal of Hepatology, 62(S1), S47–S64. https://doi.org/10.1016/j.jhep.2014.12.012
Chandel, N. S. (2021). Lipid metabolism. Cold Spring Harbor Perspectives in Biology, 13(9), 1–20. https://doi.org/10.1101/CSHPERSPECT.A040576
Cheng, Z., Zhang, L., Yang, L., & Chu, H. (2022). The critical role of gut microbiota in obesity. Frontiers in Endocrinology, 13(October), 1–14. https://doi.org/10.3389/fendo.2022.1025706
Chooi, Y. C., Ding, C., & Magkos, F. (2019). The epidemiology of obesity. Metabolism: Clinical and Experimental, 92, 6–10. https://doi.org/10.1016/j.metabol.2018.09.005
Costa, M. A. de C., Dias Moreira, L. de P., Duarte, V. da S., Cardoso, R. R., São José, V. P. B. de, Silva, B. P. da, Grancieri, M., Corich, V., Giacomini, A., Bressan, J., Martino, H. S. D., & Barros, F. A. R. de. (2022). Kombuchas from Green and Black Tea Modulate the Gut Microbiota and Improve the Intestinal Health of Wistar Rats Fed a High-Fat High-Fructose Diet. Nutrients, 14(24). https://doi.org/10.3390/nu14245234
Degruttola, A. K., Low, D., Mizoguchi, A., & Mizoguchi, E. (2016). Current understanding of dysbiosis in disease in human and animal models. Inflammatory Bowel Diseases, 22(5), 1137–1150. https://doi.org/10.1097/MIB.0000000000000750
Haghmorad, D., Yazdanpanah, E., Sadighimoghaddam, B., Yousefi, B., Sahafi, P., Ghorbani, N., Rashidy-Pour, A., & Kokhaei, P. (2021). Kombucha ameliorates experimental autoimmune encephalomyelitis through activation of Treg and Th2 cells. Acta Neurologica Belgica, 121(6), 1685–1692. https://doi.org/10.1007/s13760-020-01475-3
Hecker, J., Freijer, K., Hiligsmann, M., & Evers, S. M. A. A. (2022). Burden of disease study of overweight and obesity; the societal impact in terms of cost-of-illness and health-related quality of life. BMC Public Health, 22(1), 1–13. https://doi.org/10.1186/s12889-021-12449-2
Hernández-Gómez, J. G., López-Bonilla, A., Trejo-Tapia, G., Ávila-Reyes, S. V., Jiménez-Aparicio, A. R., & Hernández-Sánchez, H. (2021). In vitro bile salt hydrolase (Bsh) activity screening of different probiotic microorganisms. Foods, 10(3), 1–10. https://doi.org/10.3390/foods10030674
Hotamisligil, G. S. (2017). Inflammation, metaflammation and immunometabolic disorders. Nature, 542(7640), 177–185. https://doi.org/10.1038/nature21363
Hyun, J., Lee, Y., Wang, S., Kim, J., Kim, J., Cha, J. H., Seo, Y. S., & Jung, Y. (2016). Kombucha tea prevents obese mice from developing hepatic steatosis and liver damage. Food Science and Biotechnology, 25(3), 861–866. https://doi.org/10.1007/s10068-016-0142-3
Jung, Y., Kim, I., Mannaa, M., Kim, J., Wang, S., Park, I., Kim, J., & Seo, Y. S. (2019). Effect of Kombucha on gut-microbiota in mouse having non-alcoholic fatty liver disease. Food Science and Biotechnology, 28(1), 261–267. https://doi.org/10.1007/s10068-018-0433-y
Kapp, J. M., & Sumner, W. (2019). Kombucha: a systematic review of the empirical evidence of human health benefit. Annals of Epidemiology, 30, 66–70. https://doi.org/10.1016/j.annepidem.2018.11.001
Khanna, D., Khanna, S., Khanna, P., Kahar, P., & Patel, B. M. (2022). Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus, 14(2). https://doi.org/10.7759/cureus.22711
Koh, S. P., Sew, Y. S., Sabidi, S., Maarof, S., Sharifudin, S. A., & Abdullah, R. (2022). Anti-obesity Effects of SCOBY Jackfruit Beverages and Their Influence on Gut Microbiota. Exploratory Research and Hypothesis in Medicine, 000(000), 000–000. https://doi.org/10.14218/erhm.2021.00072
Kruk, M., Trząskowska, M., Ścibisz, I., & Pokorski, P. (2021). Application of the “scoby” and kombucha tea for the production of fermented milk drinks. Microorganisms, 9(1), 1–17. https://doi.org/10.3390/microorganisms9010123
Lam, Y. Y., Ha, C. W. Y., Hoffmann, J. M. A., Oscarsson, J., Dinudom, A., Mather, T. J., Cook, D. I., Hunt, N. H., Caterson, I. D., Holmes, A. J., & Storlien, L. H. (2015). Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice. Obesity, 23(7), 1429–1439. https://doi.org/10.1002/oby.21122
Latif, A., Shehzad, A., Niazi, S., Zahid, A., Ashraf, W., Iqbal, M. W., Rehman, A., Riaz, T., Aadil, R. M., Khan, I. M., Özogul, F., Rocha, J. M., Esatbeyoglu, T., & Korma, S. A. (2023). Probiotics: mechanism of action, health benefits and their application in food industries. Frontiers in Microbiology, 14(August). https://doi.org/10.3389/fmicb.2023.1216674
Lee, C., Kim, J., Wang, S., Sung, S., Kim, N., Lee, H. H., Seo, Y. S., & Jung, Y. (2019). Hepatoprotective effect of kombucha tea in rodent model of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. International Journal of Molecular Sciences, 20(9). https://doi.org/10.3390/ijms20092369
Lin, X., & Li, H. (2021). Obesity: Epidemiology, Pathophysiology, and Therapeutics. Frontiers in Endocrinology, 12(September), 1–9. https://doi.org/10.3389/fendo.2021.706978
Luo, Y., & Liu, M. (2016). Adiponectin: A versatile player of innate immunity. Journal of Molecular Cell Biology, 8(2), 120–128. https://doi.org/10.1093/jmcb/mjw012
Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38, 171–178. https://doi.org/10.1016/j.fm.2013.09.003
Mayoral, L. P.-C., Andrade, G. M., Mayoral, E. P.-C., , Teresa Hernandez Huerta , Socorro Pina Canseco, F. J. R. C., Héctor Alejandro Cabrera-Fuentes, Cruz, M. M., Santiago, A. D. P., Alpuche, J. J., Zenteno1, E., Ruíz1, H. M., Cruz1, R. M., & Perez-Campos, J. H. J. & E. (2020). Obesity subtypes, related biomarkers & heterogeneity. Journal of Dental Education, 76(11), 1532–1539. https://doi.org/10.4103/ijmr.IJMR
Milić, S., Lulić, D., & Štimac, D. (2014). Non-alcoholic fatty liver disease and obesity: Biochemical, metabolic and clinical presentations. World Journal of Gastroenterology, 20(28), 9330–9337. https://doi.org/10.3748/wjg.v20.i28.9330
Moreira, G. V., Araujo, L. C. C., Murata, G. M., Matos, S. L., & Carvalho, C. R. O. (2022a). Kombucha tea improves glucose tolerance and reduces hepatic steatosis in obese mice. Biomedicine and Pharmacotherapy, 155(July), 113660. https://doi.org/10.1016/j.biopha.2022.113660
Moreira, G. V., Araujo, L. C. C., Murata, G. M., Matos, S. L., & Carvalho, C. R. O. (2022b). Kombucha tea improves glucose tolerance and reduces hepatic steatosis in obese mice. Biomedicine and Pharmacotherapy, 155(September), 113660. https://doi.org/10.1016/j.biopha.2022.113660
Othman, Z. A., Zakaria, Z., Suleiman, J. B., Ghazali, W. S. W., & Mohamed, M. (2021). Anti-atherogenic effects of orlistat on obesity-induced vascular oxidative stress rat model. Antioxidants, 10(2), 1–16. https://doi.org/10.3390/antiox10020251
Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., Mcdonald, S., … Mckenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n160
Parry, S. A., & Hodson, L. (2017). Influence of dietary macronutrients on liver fat accumulation and metabolism. Journal of Investigative Medicine, 65(8), 1102–1115. https://doi.org/10.1136/jim-2017-000524
Permatasari, H. K., Firani, N. K., Prijadi, B., Irnandi, D. F., Riawan, W., Yusuf, M., Amar, N., Chandra, L. A., Yusuf, V. M., Subali, A. D., & Nurkolis, F. (2022). Kombucha drink enriched with sea grapes (Caulerpa racemosa) as potential functional beverage to contrast obesity: An in vivo and in vitro approach. Clinical Nutrition ESPEN, 49, 232–240. https://doi.org/10.1016/j.clnesp.2022.04.015
Permatasari, H. K., Nurkolis, F., Gunawan, W. Ben, Yusuf, V. M., Yusuf, M., Kusuma, R. J., Sabrina, N., Muharram, F. R., Taslim, N. A., Mayulu, N., Batubara, S. C., Samtiya, M., Hardinsyah, H., & Tsopmo, A. (2022). Modulation of gut microbiota and markers of metabolic syndrome in mice on cholesterol and fat enriched diet by butterfly pea flower kombucha. Current Research in Food Science, 5(June), 1251–1265. https://doi.org/10.1016/j.crfs.2022.08.005
R., N., T.M., N., S., W., S., J., J.F., L., & H., Y. (2018). Obesity-Linked Gut Microbiome Dysbiosis Associated with Derangements in Gut Permeability and Intestinal Cellular Homeostasis Independent of Diet. Journal of Diabetes Research, 2018. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L625711774%0Ahttp://dx.doi.org/10.1155/2018/3462092
Ruan, W., Engevik, M. A., Spinler, J. K., & Versalovic, J. (2020). Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Digestive Diseases and Sciences, 65(3), 695–705. https://doi.org/10.1007/s10620-020-06118-4
Sales, A. L., Iriondo-DeHond, A., DePaula, J., Ribeiro, M., Ferreira, I. M. P. L. V. O., Miguel, M. A. L., del Castillo, M. D., & Farah, A. (2023). Intracellular Antioxidant and Anti-Inflammatory Effects and Bioactive Profiles of Coffee Cascara and Black Tea Kombucha Beverages. Foods, 12(9). https://doi.org/10.3390/foods12091905
Tasnim, N., Khan, N., Gupta, A., Neupane, P., Mehta, A., Shah, S. A., & Dey, R. C. (2023). Exploring the effects of adiponectin and leptin in correlating obesity with cognitive decline: a systematic review. Annals of Medicine & Surgery, 85(6), 2906–2915. https://doi.org/10.1097/ms9.0000000000000766
Tchang Beverly, Aras Mohini, Rekha B Kumar, & Louis J. Aronne, M. (2021). Pharmacologic Treatment of Overweight and Obesity in Adults. https://www.ncbi.nlm.nih.gov/books/NBK279038/
Tonucci, L. B., Olbrich dos Santos, K. M., Licursi de Oliveira, L., Rocha Ribeiro, S. M., & Duarte Martino, H. S. (2017). Clinical application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study. Clinical Nutrition, 36(1), 85–92. https://doi.org/10.1016/j.clnu.2015.11.011
Vázquez-Cabral, B. D., Larrosa-Pérez, M., Gallegos-Infante, J. A., Moreno-Jiménez, M. R., González-Laredo, R. F., Rutiaga-Quiñones, J. G., Gamboa-Gómez, C. I., & Rocha-Guzmán, N. E. (2017). Oak kombucha protects against oxidative stress and inflammatory processes. Chemico-Biological Interactions, 272, 1–9. https://doi.org/10.1016/j.cbi.2017.05.001
Watawana, M. I., Jayawardena, N., Gunawardhana, C. B., & Waisundara, V. Y. (2015). Health, wellness, and safety aspects of the consumption of kombucha. Journal of Chemistry, 2015. https://doi.org/10.1155/2015/591869
Wen, X., Zhang, B., Wu, B., Xiao, H., Li, Z., Li, R., Xu, X., & Li, T. (2022). Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01149-x
Westphaln, K. K., Regoeczi, W., Masotya, M., Vazquez-Westphaln, B., Lounsbury, K., McDavid, L., Lee, H. N., Johnson, J., & Ronis, S. D. (2021). From Arksey and O’Malley and Beyond: Customizations to enhance a team-based, mixed approach to scoping review methodology. MethodsX, 8, 101375. https://doi.org/10.1016/j.mex.2021.101375
Wit, M., Trujillo‐Viera, J., Strohmeyer, A., Klingenspor, M., Hankir, M., & Sumara, G. (2022). When fat meets the gut—focus on intestinal lipid handling in metabolic health and disease. EMBO Molecular Medicine, 14(5), 1–18. https://doi.org/10.15252/emmm.202114742
World Obesity Federation. (2022). Obesity Atlas 2022 (Issue March). www.worldobesity.org
Xu, S., Wang, Y., Wang, J., & Geng, W. (2022). Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and ItXu, S., Wang, Y., Wang, J., and Geng, W., 2022. Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods,. Foods, 11(5).
Zubaidah, E., Afgani, C. A., Kalsum, U., Srianta, I., & Blanc, P. J. (2019). Comparison of in vivo antidiabetes activity of snake fruit Kombucha, black tea Kombucha and metformin. Biocatalysis and Agricultural Biotechnology, 17(November 2018), 465–469. https://doi.org/10.1016/j.bcab.2018.12.026
Zubaidah, E., Susanti, I., Sujuti, H., Martati, E., Rahayu, A. P., Srianta, I., & Tewfik, I. (2023). The distinctive hepatoprotective activity of turmeric kombucha (Curcuma longa) induced by diethylnitrosamine in Balb/C mice. Food Bioscience, 55(August), 103043. https://doi.org/10.1016/j.fbio.2023.103043
How to Cite
Nisa, Z. R., Jusup, S. A., & Yudhani, R. D. (2024). A Recent Update: Molecular Mechanism of Kombucha as A Probiotic for Obesity Management. Proceedings of the International Conference on Nursing and Health Sciences, 5(1), 211-226. https://doi.org/10.37287/picnhs.v5i1.3820