Steeping Bay Leaves (Syzygium Polyanthum) to Increase Cholinesterase Levels Due to Pesticide Exposure in Farmers

  • Mokh. Sujarwadi Faculty of Nursing, Universitas Jember
  • Mukhammad Toha Faculty of Nursing, Universitas Jember
  • Ida Zuhroidah Faculty of Nursing, Universitas Jember
Keywords: cholinesterase levels, famers, pesticide exposure, steeping bay leaves (syzygium polyanthum)

Abstract

Farmers are at high risk of pesticide exposure. The threat of death from pesticides reaches 168,000 per year. Pesticide free radicals cause health problems in the form of impaired function of nerves, liver, and kidneys and cause cancer. Low blood cholinesterase (CHE) indicates pesticide residue. Steeping bay leaves (Syzygium polyanthum) are expected to improve liver function to detoxify pesticide-free radicals that have already entered the body. This study aims to determine the effect of steeping bay leaves (Syzygium polyanthum) on increased cholinesterase (CHE) levels. Qualitative research with pre-experimental design one group pre-test-post test. As a population is a group of farmers in the Pasuruan area. The sample size in this study was 20 respondents using purposive sampling techniques. The research procedure is to measure cholinesterase levels in the blood before and after steeping bay leaves (Syzygium polyanthum) after 15 days. The data were analyzed by paired t-test. There was an increase in average blood cholinesterase levels of 399.35 U/L after 15 days of regular consumption. Blood cholinesterase levels before treatment were 5,301.25 U/L and after treatment became 5,700.00 U/L. The paired t-test results showed a significance value of p = 0.000. The average working time of the participants 18.5 years is very likely to have a lot of pesticide residues in their bodies and cause disruption of the normal function of several organs, causing mild and severe health problems. Bay leaf steeping (syzygium polyanthum)has been shown to increase cholinesterase (CHE) levels. To avoid the threat of health problems, farmers should diligently consume steeping bay leaves regularly.

References

Abraham, A. J., Duvall, E. S., le Roux, E., Ganswindt, A., Clauss, M., Doughty, C. E., & Webster, A. B. (2023). Anthropogenic supply of nutrients in a wildlife reserve may compromise conservation success. Biological Conservation, 284(December 2022), 110149. https://doi.org/10.1016/j.biocon.2023.110149

Aguera, R. G., Freires, C. da S., Oliveira, L. O. de, Monteiro, L. R., Lini, R. S., Romoli, J. C. Z., Freire, B. M., Nerilo, S. B., Machinski Junior, M., Batista, B. L., & Mossini, S. A. G. (2022). Risk evaluation of occupational exposure of southern Brazilian flower farmers to pesticides potentially leading to cholinesterase inhibition and metals exposure. Environmental Toxicology and Pharmacology, 93, 103874. https://doi.org/10.1016/j.etap.2022.103874

Boateng, K. O., Dankyi, E., Amponsah, I. K., Awudzi, G. K., Amponsah, E., & Darko, G. (2023). Knowledge, perception, and pesticide application practices among smallholder cocoa farmers in four Ghanaian cocoa-growing regions. Toxicology Reports, 10(October 2022), 46–55. https://doi.org/10.1016/j.toxrep.2022.12.008

Epidemiologico, C. del conocimiento. (2020). STROBE Statement—Checklist of items that should be included in reports of. Universidad de Los Andes, 1, 1–2. http://files.figshare.com/422353/Checklist_S1.doc

Erminia Schiano, M., Sodano, F., Cassiano, C., Magli, E., Seccia, S., Grazia Rimoli, M., & Albrizio, S. (2024). Monitoring of seven pesticide residues by LC-MS/MS in extra virgin olive oil samples and risk assessment for consumers. Food Chemistry, 442(September 2023), 138498. https://doi.org/10.1016/j.foodchem.2024.138498

Febriana, S. A., Khalidah, M., Huda, F. N., Sutarni, S., Mahayana, I., Indrastuti, N., Setyopranoto, I., Waskito, F., Prawiroranu, S., Dwianingsih, E. K., & Malueka, R. G. (2023). Prevalence of pesticide related occupational diseases among Indonesian vegetable farmers – A collaborative work. Toxicology Reports, 10(January), 571–579. https://doi.org/10.1016/j.toxrep.2023.04.016

Hamka, Utami, T. N., Sillehu, S., Pelu, A. D., Djarami, J., Tukiman, S., Tunny, I. S., Tuharea, A., & Cahyawati, S. (2021). Analyzing the use of pesticides on health complaints of farmers in Waihatu Village, Indonesia. Gaceta Sanitaria, 35, S23–S26. https://doi.org/10.1016/j.gaceta.2020.12.007

Hartanti, L., Yonas, S. M. K., Mustamu, J. J., Wijaya, S., Setiawan, H. K., & Soegianto, L. (2019). Influence of extraction methods of bay leaves (Syzygium polyanthum) on antioxidant and HMG-CoA Reductase inhibitory activity. Heliyon, 5(4), e01485. https://doi.org/10.1016/j.heliyon.2019.e01485

Hesami Arani, M., Kermani, M., Rezaei Kalantary, R., Jaafarzadeh, N., & Bagheri Arani, S. (2023). Pesticides residues determination and probabilistic health risk assessment in the soil and cantaloupe by Monte Carlo simulation: A case study in Kashan and Aran-Bidgol, Iran. Ecotoxicology and Environmental Safety, 263(July), 115229. https://doi.org/10.1016/j.ecoenv.2023.115229

Hyland, C., Hernandez, A., Gaudreau, É., Larose, J., Bienvenu, J. F., Meierotto, L., Som Castellano, R. L., & Curl, C. L. (2024). Examination of urinary pesticide concentrations, protective behaviors, and risk perceptions among Latino and Latina farmworkers in Southwestern Idaho. International Journal of Hygiene and Environmental Health, 255(October 2023). https://doi.org/10.1016/j.ijheh.2023.114275

Omedes, S., Crespo-Picazo, J. L., Robinson, N. J., García-Párraga, D., & Sole, M. (2024). Identifying biomarkers of pollutant exposure in ocean sentinels: Characterisation and optimisation of B-esterases in plasma from loggerhead turtles undergoing rehabilitation. Chemosphere, 348(August 2023). https://doi.org/10.1016/j.chemosphere.2023.140770

Panggabean, A. S., Setyopranoto, I., Wicaksono, A. R., Rismawan, A., Dwianingsih, E. K., Tama, W. N., Gofir, A., Setyaningrum, C. T. S., Sutarni, S., Asmedi, A., Rhamadianti, A. F., Bawono, R. G., & Malueka, R. G. (2023). Neuropathy caused by pesticide exposure on farmers in Ngablak District, Magelang, Central Java, Indonesia: An electroneuromyography study. Toxicology Reports, 11(1), 330–338. https://doi.org/10.1016/j.toxrep.2023.09.020

Pawestri, I. N., & Sulistyaningsih, E. (2021). Neurobehavioral performance of Indonesian farmers and its association with pesticide exposure: A cross-sectional study. Clinical Epidemiology and Global Health, 11(February), 100754. https://doi.org/10.1016/j.cegh.2021.100754

Sandoval-Herrera, N., Castillo, J. P., Ching, M. E. A., Herrera M., L. G., Faure, P. A., & Welch, K. (2023). Non-destructive methods to assess pesticide exposure in free-living bats. Science of the Total Environment, 870(February), 162011. https://doi.org/10.1016/j.scitotenv.2023.162011

Silva, V., Gai, L., Harkes, P., Tan, G., Ritsema, C. J., Alcon, F., Contreras, J., Abrantes, N., Campos, I., Baldi, I., Bureau, M., Christ, F., Mandrioli, D., Sgargi, D., Pasković, I., Polić Pasković, M., Glavan, M., Hofman, J., Huerta Lwanga, E., … Geissen, V. (2023). Pesticide residues with hazard classifications relevant to non-target species including humans are omnipresent in the environment and farmer residences. Environment International, 181(July). https://doi.org/10.1016/j.envint.2023.108280

Tambo, J. A., Mugambi, I., Onyango, D. O., Uzayisenga, B., & Romney, D. (2023). Using mass media campaigns to change pesticide use behaviour among smallholder farmers in East Africa. Journal of Rural Studies, 99(March), 79–91. https://doi.org/10.1016/j.jrurstud.2023.03.001

Published
2024-06-30
How to Cite
Sujarwadi, M., Toha, M., & Zuhroidah, I. (2024). Steeping Bay Leaves (Syzygium Polyanthum) to Increase Cholinesterase Levels Due to Pesticide Exposure in Farmers. Proceedings of the International Conference on Nursing and Health Sciences, 5(1), 513-518. https://doi.org/10.37287/picnhs.v5i1.2084