Gagal Ginjal Akut sebagai Komplikasi Covid-19: Literature Review

  • Detty Novianty Universitas Lampung
Keywords: acute kidney injury, covid-19, coronavirus, novel coronavirus disease, pandemic

Abstract

Novel coronavirus disease (COVID-19) merupakan penyakit saluran pernafasan akut baru yang disebabkan oleh virus SARSCoV-2, dengan manifestasi klinis berpa pneumonia akut pada paru dan dapat komplikasi berbagai macam organ seperti jantung, saluran nafas, darah, dan ginjal. Penyakit ini sangat menular dengan manifetasi dan komplikasi yang beraneka ragam dan menimbulkan ancaman bagi kesehatan masyarakat. Karena sering muncul bersama pneumonia akut, Gagal Ginjal Akut sangat berperan dalam prognosis pasien. Oleh karenanya, perhatian harus diberikan pada Gagal Ginjal Akut dalam COVID-19. Penelitian ini menggunakan metode review jurnal ilmiah mengenai COVID-19. Peneliti mencari jurnal menggunakan aplikasi Google scholar dan NCBI, dengan jurnal yang digunakan berkisar dari tahun 2000 sampai dengan tahun 2020. Artikel dalam literature review ini dianalisis, diekstraksi, dan disintesis serta kemudian dirangkum hasilnya. Dari hasil analisis ini diharapkan akan ditemukan kesimpulan yang dapat dijadikan dasar mengenai GGA sebagai komplikasi dari COVID-19. Gagal Ginjal Akut pada COVID-19 sangat sering terjadi terutama pada pasien berat atau yang mengalami kondisi kritis. Pemahaman kita mengenai pathogenesis Gagal Ginjal Akut pada COVID-19 masih sangat bersifat asumtif, berdasarkan penelitian sebelumnya dan 2 penyakit sebelumnya, yakni SARS dan MERS. Kerusakan ginjal dapat terjadi karena serangan langsung dari virus itu sendiri, atau dikarenakan badai sitokin yang disebabkan oleh abnormalitas system imun. Hipotensi atau dehidrasi, hipoksemia, sepsis, dan obat-obatan nefrotoksik juga dapat menyebabkan Gagal Ginjal Akut.

References

(JDCMSC), J. d. (2020). Press conference of the joint defense and control mechanism of the State Council.

(KDIGO), K. D. (2012). Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl.

(NHC PRC), N. H. (2020). Guidelines for diagnosis and treatment of 2019 novel coronavirus disease. Beijing: National Health Commision of the People's Republic of China.

(WHO), W. H. (2020). Novel Coronavirus (COVID-19) Situation Report. Dipetik September 23, 2020, dari https://www.who.int/docs/defaultsource/coronaviruse/situationreports/20200214-sitrep-25-covid19.pdf?sfvrsn=61dda7d_

Arabi YM, B. H. (2017). Middle East Respiratory Syndrome. N Engl J Med, 376(6):584–94.

Bosch, B. R. (2003). The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Journal 77, 8801–8811.

Ceraolo C, G. F. (2020). Genomic variance of the 2019‐nCoV coronavirus. J Med Virol, 92:522–8.

Channappanavar, R. J. (2014). T cell-mediated immune response to respiratory coronaviruses. Immunologic Research, 118–128.

Chen N, Z. M. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395(10223):507–13.

Chen RC, T. X. (2006). Treatment of severe acute respiratory syndrome with glucosteroids: the Guangzhou experience. Chest, 129(6):1441–52.

Cheng Y, L. R. (2020). Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int, 97(5):829–38.

Chu KH, T. W. (2005). Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int, 67(2): 698–705.

Diao B, W. C. (2020). Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. medRxiv. doi:https://doi.org/10.1101/2020.03.04.20031120

Eckerle I, M. M. (2013). In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East Respiratory Syndrome (MERS) Coronavirus infection.

Firas, A. R.-N. (2020). SARS-CoV-2 and Coronavirus disease 2019: what we know so far. Pathogens, 9(3); 231.

Fujimoto, I. J. (2000). Virus clearance through apoptosisdependent phagocytosis of influenza A virus-infected cells by macrophages. Journal 74, 3399–3403.

Guan WJ, Z. N. (2020). Clinical Characteristics of Covid-19 in China. N Engl J Med, 382(19):1861–2.

Hamming, I. W. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal 203, 631–637.

Hoffmann M, K.-W. H. (2020). The novel coronavirus 2019 (2019-nCoV) uses the SARS1 coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv.

Holshue ML, D. C. (2020). Washington State 2019-nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States . N Engl J Med, 382(10):929– 36.

Jia, H. D. (2005). ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. Journal 79, 14614–14621.

Letko, M. A. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Journal 5 , 562–569.

Li W, M. M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965): 450–4.

Ling Y, X. S. (2020). Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl), 133(9):1039–43.

Lovren, F. Y.-O. (2008). Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Journal 295, 1377–1384.

Park JT, L. H. (2016). HICORES Investigators. High-dose versus conventional-dose continuous venovenous hemodiafiltration and patient and kidney survival and cytokine removal in sepsis-associated acute kidney injury: a randomized controlled trial. Am J Kidney Dis, 68(4):599–608.

Qin, C. L. (2020). Dysregulation of immune response in patients with COVID-19 in Wuhan, China. doi:https://doi.org/10.1093/cid/ciaa248.

Rothan HA, B. S. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun, 109:102433.

Santos RA, F. A.-B. (2013). Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J Endocrinol, 216(2):R1–17.

Sluimer, J. J. (2008). Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions. Journal 215, 273–279.

Su H, Y. M. (2020). Renal histopathological analysis of 26 postmorten findings of patients with COVID-19 in China. Kidney Int. doi:10.1016/j.kint.2020.04.003.

Thevarajan I, N. T. (2020). Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med, 26(4):453–5.

van Griensven J, E. T. (2016). Ebola-Tx Consortium. Evaluation of convalescent plasma for Ebola virus disease in Guinea. N Engl J Med, 374(1):33–42.

volunteers, A.-2.-n., & Li Z, W. M. (2020). Caution on kidney dysfunctions of 2019-nCoV patients. medRxiv. doi:https://doi.org/https:// doi.org/10.1101/2020.02.08.20021212.

Walls, A. Y. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. doi:https://doi.org/10.1016/j.cell.2020.02.058.

Wang D, H. B. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 323(11):1061.

Wang, M. H. (2018). Early Career, Thrombotic regulation from the endothelial cell perspectives. Journal 38, e90–e95.

Yang X, Y. Y. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med, 8(5): 475–81.

Yoshikawa, T. T. (2009). Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. Journal 83, 3039–3048.

Yuki, K. M. (2020). COVID-19 pathophysiology: A review. Clinical Immunology.

Zeng, H. C. (2012). Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection. Journal 86, 667–678.

Zhou P, Y. X. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273.

Zhu N, Z. D. (2020). A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med, 382:727-33.

Zou, X. K. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. doi:https://doi.org/10.1007/ s11684-020-0

Published
2020-12-11
How to Cite
Novianty, D. (2020). Gagal Ginjal Akut sebagai Komplikasi Covid-19: Literature Review. Indonesian Journal of Nursing and Health Sciences, 1(1), 63-72. Retrieved from http://jurnal.globalhealthsciencegroup.com/index.php/IJNHS/article/view/255
Section
Articles