

ANALYSIS OF FACTORS RELATED TO THE INCIDENCE OF VENTILATOR-ASSOCIATED PNEUMONIA (VAP) IN THE INTENSIVE CARE UNIT

Yudi Jaya Cahyana, Irfansyah Baharuddin Pakki*, Ida Ayu Indira Dwika Lestari, Ratno Adrianto, Yadi, Akhmad Azmiardi

Faculty of Public Health, Universitas Mulawarman, Jl. Kuaro, Gn. Kelua, Samarinda Ulu, Samarinda, Kalimantan Timur 75119, Indonesia

*irfanchango@gmail.com

ABSTRACT

Ventilator-associated pneumonia (VAP) occurs in patients who have been on mechanical ventilation with an endotracheal tube (ETT) for at least 48 hours. This type of pneumonia typically arises as a result of nosocomial infections or Healthcare-Associated Infections (HAIs) and is commonly linked to the use of ventilators in hospital settings. This study was to identify the factors associated with the incidence of VAP among patients admitted to the Intensive Care Unit of Abdoel Wahab Sjahranie Hospital, Samarinda. Method: A cross-sectional study was conducted. The study population consisted of all patients who had undergone mechanical ventilation in the ICU without a prior history of pneumonia, totaling 118 respondents, using the HAIs bundle observation tool and direct observation. Chi-square and multiple logistic regression were used for statistical analysis, along with a predictive model. The results showed that the prevalence of VAP among respondents in the ICU was 5.9%. Factors significantly associated with the incidence of VAP included duration of ventilator use ($p = 0.000$), oral hygiene procedures ($p = 0.000$), head-of-bed elevation to 30–45° ($p = 0.007$), hand hygiene compliance ($p = 0.015$), and aseptic suctioning procedures ($p = 0.043$). The multivariate analysis identified duration of ventilator use ≥ 96 hours as the most dominant factor, with the highest Odds Ratio (OR = 13.975; 95% CI: 0.753–227.435). Duration of ventilator use was the most significant factor associated with an increased risk of VAP, with patients ventilated for ≥ 96 hours being 13 times more likely to develop VAP compared to those ventilated for < 96 hours. Proper oral hygiene, appropriate head-of-bed elevation (30–45°), compliance with hand hygiene, and aseptic suctioning procedures were also found to be significantly associated with VAP incidence among ICU patients at Abdoel Wahab Sjahranie Hospital

Keywords: hand hygiene; ICU infection; mechanical ventilation duration; oral hygiene; ventilator-associated pneumonia

How to cite (in APA style)

Cahyana, Y. J., Pakki, I. B., Lestari, I. A. I. D., Adrianto, R., Yadi, Y., & Azmiardi, A. (2025). Analysis of Factors Related to the Incidence of Ventilator-Associated Pneumonia (VAP) in the Intensive Care Unit. Indonesian Journal of Global Health Research, 7(5), 97-104. <https://doi.org/10.37287/ijgchr.v7i5.6628>.

INTRODUCTION

Ventilator-Associated Pneumonia (VAP) is one of the most common complications experienced by patients undergoing treatment in the Intensive Care Unit who are on mechanical ventilation for more than 48 hours. VAP falls under the category of nosocomial infections or Healthcare-Associated Infections (HAIs), which contribute to increased morbidity, mortality, length of stay, and overall healthcare costs (Klompas et al., 2022). According to global data, VAP ranks as the second most frequent cause of nosocomial infections in the United States, accounting for approximately 25% of all infections occurring in ICUs. In Japan, the mortality rate due to nosocomial pneumonia ranges between 5–10 per 1,000 patients. In Europe, research by Gillespie indicates that around 10% of ICU patients develop nosocomial infections, with 47% of these cases being pneumonia (Maria, 2022; Wibowo, 2023).

Studies in Indonesia have also reported a relatively high prevalence of VAP, such as at RSU Haji Surabaya (10.5%), RSUD Soekarno Bangka Belitung (27.3%), and RSU Kabupaten

Tangerang (6.7%) (Nugroho, 2021; Wulan, 2024; Maria, 2022). At RSUD Abdoel Wahab Sjahranie Samarinda, the incidence rate of VAP increased from 4.5‰ in 2023 to 9.4‰ in 2024, exceeding the national standard of <5.8‰ as outlined in Regulation of the Minister of Health (PMK) No. 27 of 2017 (PPI Committee, 2023). Several risk factors are suspected to contribute to the occurrence of VAP, including prolonged use of mechanical ventilation, poor oral hygiene, improper head positioning, non-aseptic suctioning techniques, and non-compliance with hand hygiene protocols. These factors may facilitate the colonization of pathogenic microorganisms in the respiratory tract and lead to aspiration into the lungs, eventually resulting in infection (Susanti et al., 2015; Klompas et al., 2022). Surveillance data from the Infection Prevention and Control (IPC) team at RSUD AWS indicate a significant rise in VAP cases in 2024. This situation suggests a gap between the hospital's infection prevention policies such as the implementation of the VAP bundle and their actual practice in clinical settings. Therefore, further analysis is required to identify factors associated with the occurrence of VAP in this hospital, serving as an evidence based foundation for infection control policy making. This study is of particular importance, as no similar research has yet been conducted at RSUD Abdoel Wahab Sjahranie Samarinda, a type A teaching hospital in East Kalimantan Province. The primary objective of this research is to analyze the factors associated with the incidence of VAP among ventilated patients in the Intensive Care Unit of RSUD AWS Samarinda in the year 2025.

METHOD

This study employed a quantitative observational design with a cross-sectional approach, which aimed to examine the association between various risk factors and the incidence of Ventilator-Associated Pneumonia (VAP). The study population consisted of all patients who had undergone mechanical ventilation in the Intensive Care Unit of RSUD Abdoel Wahab Sjahranie Samarinda. A total sampling technique was used, resulting in 118 respondents who met the inclusion criteria. Data were collected through direct observation, medical record review, and checklists related to hand hygiene practices, oral hygiene care, head-of-bed (HOB) elevation, and suction procedures. The independent variables included age, type of intubation, duration of ventilator use, oral hygiene procedures, head-of-bed elevation at 30–45°, suction practices, and compliance with hand hygiene protocols. The dependent variable was the incidence of VAP, which was identified using a Clinical Pulmonary Infection Score (CPIS) of ≥ 6 . Data were analyzed using the chi-square test to determine the associations between variables, followed by multivariate logistic regression to identify the dominant factors influencing the incidence of VAP.

RESULT

Table 1.

Frequency distribution of respondents based on patient characteristics in the Intensive Care Unit of RSUD A. Wahab Sjahranie

No	Variable	Frequency (n=118)	Percentage (%)
1	VAP		
	Yes	7	5.9
	No	111	94.1
2	Age		
	< 60 years	83	70.3
	≥ 60 years	35	29.7
3	Gender		
	Male	64	54.2
	Female	54	45.8

No	Variable	Frequency (n=118)		Percentage (%)	
4	Type of Airway Intubation				
	ETT (Endotracheal Tube)	103		87.3	
	TC (Tracheostomy)	15		12.7	
5	Duration of Ventilator Use				
	≥ 96 hours	23		19.5	
	< 96 hours	95		80.5	
6	Oral Hygiene				
	Appropriate	97		82.2	
	Inappropriate	21		17.8	
7	Head-of-Bed Elevation (30°–45°)				
	Appropriate	91		77.1	
	Inappropriate	27		22.9	
8	Hand Hygiene				
	Compliant	98		83.1	
	Non-compliant	20		16.9	
9	Suction Technique				
	Aseptic	103		87.3	
	Septic	15		12.7	
10	Comorbidities				
	Yes	60		50.8	
	No	58		49.2	
11	History of Surgery				
	Yes	77		65.3	
	No	41		34.7	

As shown in Table 1, the prevalence of Ventilator-Associated Pneumonia (VAP) among patients treated in the Intensive Care Unit of RSUD A. Wahab Sjahranie was 5.9%. The highest proportion of respondents was under 60 years of age (70.3%). Among the respondents, 87.3% were intubated using an endotracheal tube (ETT), and 19.5% had been on mechanical ventilation for more than 96 hours. Appropriate oral hygiene care was performed in 82.2% of patients, and proper head-of-bed elevation at 30°–45° was implemented in 77.1% of cases. Aseptic suction techniques were applied in 87.3% of cases, and 83.1% of respondents demonstrated compliance with hand hygiene protocols. Additionally, 50.8% of patients had comorbid conditions, and 65.3% had a history of surgery.

Table 2.
Association between Risk Factors and the Incidence of VAP in the Intensive Care Unit of RSUD A. Wahab Sjahranie.

Variable	Ventilator-Associated Pneumonia				Total	P value	OR (95%CI)
	VAP		Non-VAP				
	f	(%)	f	(%)	f	(%)	
Age							
< 60 years	4	4.8	79	95.2	83	100	0.422
≥ 60 years	3	8.6	32	91.4	35	100	(0.114 – 2.550)
Type of Airway Intubation							
ETT	4	3.9	99	96.1	103	100	0.043
							0.162

Variable	Ventilator-Associated Pneumonia				Total		P value	OR (95%CI)
	TC	3	20	12	80	15	100	
Duration of Ventilator Use								
≥ 96 hours	6	26.1	17	73.9	23	100	0.000	33.176 (3.754 – 293.229)
< 96 hours	1	1.1	94	98.9	95	100		
Oral Hygiene								
Inappropriate	6	28.6	15	71.4	21	100	0.000	38.400 (4.316 – 341.681)
Appropriate	1	1	96	99	97	100		
Head-of-Bed 30°–45°								
Inappropriate	5	18.5	22	81.5	27	100	0.007	10.114 (1.839 – 55.635)
Appropriate	2	2.2	89	97.8	91	100		
Hand Hygiene								
Non-compliant	4	20	16	80	20	100	0.015	7.917 (1.618 – 38.739)
Compliant	3	3.1	96	96.9	98	100		
Suction Technique								
Aseptik	3	20	12	80	15	100	0.043	6.188 (1.234 – 31.029)
Septik	4	3.9	99	96.1	103	100		
Comorbidities								
Yes	5	8.3	55	91.7	60	100	0.439	2.545 (0.474 – 13.678)
No	2	3.4	56	96.6	58	100		
History of Surgery								
Yes	4	5.2	73	94.8	77	100	0.693	0.694 (0.148 – 3.262)
No	3	7.3	38	92.7	41	100		

The results of the study showed that out of 118 patients who underwent mechanical ventilation in the Intensive Care Unit of RSUD Abdoel Wahab Sjahranie, 5.9% developed Ventilator-Associated Pneumonia (VAP). The chi-square test revealed significant associations between the incidence of VAP and the following risk factors: duration of ventilator use ($p = 0.000$), oral hygiene practices ($p = 0.000$), head-of-bed elevation at 30°–45° ($p = 0.007$), hand hygiene compliance ($p = 0.015$), and suction technique ($p = 0.043$).

Table 3.
Final Model of Multivariate Analysis of Risk Factors Associated with the Incidence of VAP in the Intensive Care Unit of RSUD A. Wahab Sjahranie

Variable	B	SE	Wald	p-value	OR	95% CI
Ventilator Duration ≥ 96 Hours	2.637	1.423	3.433	0.064	13.975	0.859 – 227.435
Oral Hygiene	2.126	1.229	2.990	0.084	8.379	0.753 – 93.234
Suction Technique	2.194	1.297	2.863	0.091	8.970	0.706 – 113.897
Hand Hygiene Compliance	2.541	1.303	3.800	0.051	12.689	0.986 – 163.259

The multiple logistic regression analysis revealed that ventilator duration of ≥96 hours was the most dominant factor associated with the incidence of Ventilator-Associated Pneumonia (VAP), with an Odds Ratio (OR) of 13.975 (95% CI: 0.859–227.435). This indicates that patients who were on mechanical ventilation for 96 hours or more were approximately 14 times more likely to develop VAP compared to those ventilated for less than 96 hours. These findings underscore the importance of close monitoring and timely evaluation of ventilator duration as a preventive measure against VAP.

DISCUSSION

Association Between Patient Age and VAP

Although age ≥ 60 years did not show a statistically significant association in this study, the clinical trend aligns with the theory of immunosenescence, which highlights the decline in both cellular and humoral immunity among the elderly. Khayati (2020) reported an odds ratio (OR) of 3.10 ($p = 0.019$) for advanced age as a risk factor for VAP, while Nugroho (2023) found a positive correlation ($r = 0.54$; $p = 0.001$) between older age and CPIS scores. Additionally, older patients tend to have higher APACHE II scores and longer ICU stays, suggesting an indirect contribution of age to VAP incidence through increased comorbidities, chronic inflammation, and prolonged ventilator use.

Association Between Type of Airway and VAP

The predominance of endotracheal tube (ETT) use in this study reflects standard ICU practice. Although the association was not statistically significant, literature supports that ETT carries a higher risk of microaspiration than tracheostomy. Panjaitan, Sinatra, & Siahaan (2021), through a review of 15 studies, concluded that ETT use increases VAP risk by 1.6 to 2.4 times, primarily due to cuff leakage, biofilm formation, and impaired mucociliary clearance. These findings support early consideration for tracheostomy in patients anticipated to require prolonged mechanical ventilation.

Association Between Ventilator Duration and VAP

Ventilator duration ≥ 96 hours was the strongest predictor of VAP in this study ($p < 0.001$; OR ≈ 14) and emerged as the dominant variable in the regression model. These findings are consistent with a meta-analysis by Anggryani et al. (2016), which showed a 10% increase in VAP risk for every additional 24 hours of ventilation, doubling after the fourth day. Awalin, Faridah, & Ridwan (2019) also reported a significant association ($p = 0.01$) for durations > 5 days. Pathophysiologically, prolonged ETT placement fosters biofilm development and increases exposure to invasive procedures (e.g., suctioning, nebulization), facilitating the descent of pathogenic flora into the lower respiratory tract.

Association Between Oral Hygiene Practices and VAP

Inadequate oral care, particularly the absence of toothbrushing and chlorhexidine application, was significantly associated with VAP ($p < 0.001$). Wulandari (2024) demonstrated that implementing a VAP prevention bundle including oral hygiene reduced mean CPIS scores by 2 points by day 3. Khayati (2017) further found that decreasing the frequency of toothbrushing per day increased the risk of VAP by 1.8 times. The mechanism involves suppression of Gram-negative colonization in dental plaque and the oropharynx, which serve as key reservoirs for microaspiration.

Association Between Head-of-Bed Elevation and VAP

A supine position ($< 30^\circ$) was significantly associated with VAP ($p = 0.007$). Radionuclide studies by Torres et al. showed that gastric aspiration increased by 44% in supine positioning. Current SHEA/IDSA guidelines (Klompas et al., 2022) recommend maintaining head-of-bed elevation at $30\text{--}45^\circ$ as a core component of VAP prevention bundles. Vincent (2011) estimated a Number Needed to Treat (NNT) of 10 patients to prevent one VAP episode through HOB elevation.

Association Between Hand Hygiene Compliance and VAP

Low compliance with hand hygiene practices ($\leq 50\%$ of WHO's Five Moments) was significantly associated with VAP ($p = 0.015$). Widaningsih (2022) found an OR of 3.5 among

nurses with <60% compliance. Fatmawati & Kusumajaya (2023) emphasized that implementing VAP bundles increased hand hygiene adherence to 78% and reduced VAP rates in the ICU by 25%. Cross-transmission from hands to patients has long been recognized as a major vector for ETT colonization.

Association Between Suction Technique and VAP

Non-aseptic suctioning was significantly associated with increased VAP incidence ($p = 0.043$). Awalin et al. (2019) observed that high-frequency suctioning (>6 times/day) without sterile gloves significantly raised VAP risk (RR = 1.9). Susanti et al. (2015) recommended the use of closed suction systems, which have been shown to reduce aerosol dispersion and *Pseudomonas* colonization at the distal ETT tip.

Association Between Comorbid Conditions and VAP

Although comorbidities were not significantly associated with VAP in this study, previous research suggests a potential role. Panjaitan et al. (2021) found that COPD increased VAP risk by 1.7 times. Susanti et al. (2015) also linked hypoalbuminemia (<2.5 g/dL) with impaired mucosal immunity and VAP susceptibility. The lack of significance in the current study may be due to a relatively small sample size or the confounding effect of prolonged ventilation overshadowing comorbidity impact.

Association Between Surgical History and VAP

While not statistically significant in this study, Shah (2022) reported a post-thoracic surgery VAP incidence of 17%, compared to 8% in non-surgical ICU patients ($p < 0.05$). Cunnion et al. proposed that prolonged anesthesia and intraoperative transfusions compromise pulmonary defenses, while postoperative immobility facilitates oropharyngeal colonization. These findings suggest the need for thorough preoperative risk assessment and early mobilization protocols to reduce postoperative VAP risk.

CONCLUSION

Based on the findings of this study, prolonged duration of mechanical ventilation emerged as the most dominant factor significantly associated with the incidence of Ventilator-Associated Pneumonia (VAP). However, procedural and behavioral variables oral hygiene practices, head-of-bed elevation, hand hygiene compliance, and aseptic suction techniques, also demonstrated substantial and actionable contributions to VAP prevention. A multimodal approach based on the VAP prevention bundle has been proven effective in various studies and should be strengthened at RSUD A. Wahab Sjahranie, Samarinda. This includes the implementation of compliance audits, regular staff training, and electronic monitoring systems for ventilator duration to facilitate timely extubation or tracheostomy conversion.

REFERENCES

Aloush, S. M., & Al-Rawajfa, O. M. (2020). Prevention of ventilator-associated pneumonia in intensive care units: Barriers and compliance. *International Journal of Nursing Practice*, 26(5). <https://doi.org/10.1111/ijn.12838>

Arvanitis, M., Anagnostou, T., Kourkoumpetis, T. K., Ziakas, P. D., Desalermos, A., & Mylonakis, E. (2019). The impact of antimicrobial resistance and aging in VAP outcomes: experience from a large tertiary care center. *PloS one*, 9(2), e89984

Awalin, F., Faridah, I., & Ridwan, U. S. (2019). Faktor-Faktor Yang Berhubungan Dengan Ventilation Associated Pneumonia (VAP) Pada Populasi Pasien Gangguan Persyarafan Diruang ICU RSU Provinsi Banten Tahun 2019. *Jurnal Kesehatan*, 8(2), 42–56.

Dewi, Hartika and Harahap, Moh. Sofyan (2014) Hubungan Usia Penderita Ventilator Associated Pneumonia Dengan Lama Rawat Inap DI ICU RSUP DR. Kariadi Semarang. Undergraduate thesis, Faculty of Medicine, Diponegoro University.

Evira Natasya Yusuf (2019) Hubungan Antara Faktor Risiko Pasien Dengan Ventilator Associated Pneumonia Yang Disebabkan Oleh Carbapenem Resistant Acinetobacter baumanii DI Unit Perawatan Intensif RSUD Dr Saiful Anwar Malang. Faculty of Medicine Brawijaya University.

Elsheikh, M., Kuriyama, A., Goto, Y., Takahashi, Y., Toyama, M., Nishikawa, Y., El Heniedy, M. A., Abdelraouf, Y. M., Okada, H., & Nakayama, T. (2024). Incidence and predictors of ventilator-associated pneumonia using a competing risk analysis: a single-center prospective cohort study in Egypt. *BMC Infectious Diseases*, 24(1). <https://doi.org/10.1186/s12879-024-09909-6>

Fatmawati, R., & Kusumajaya, H. (2023). Faktor-Faktor Yang Berhubungan Dengan Pengetahuan Perawat Dalam Pencegahan Ventilator Associated Pneumonia. <http://jurnal.globalhealthsciencegroup.com/index.php/JPPP>

Haslinda, D (2024) Pengaruh VAP Bundle Intervention Dalam Pencegahan VAP Pada Pasien Terpasang Ventilator Mekanik Di Ruangan ICU RSUD Prof. Dr. H. Aloe Saboe Kota Gorontalo. *Jurnal Keperawatan Muhammadiyah* 9 (3).

Hernandez Padilla AC., dkk. (2019) Apakah intubasi endobronkial pra-rumah sakit merupakan faktor risiko untuk pneumonia terkait ventilator berikutnya. Analisis retrospektif. *PLoS ONE*, 14 (5): e0217466. <https://doi.org/10.1371/journal.pone.0217466>

Karakuzu, Z., Iscimen, R., Akalin, H., Girgin, N. K., Kahveci, F., & Sinirtas, M. (2018). Prognostic risk factors in ventilator-associated pneumonia. *Medical Science Monitor*, 24, 1321 1328

Kallet, R. H. (2019). Ventilator bundles in transition: From prevention of ventilator-associated pneumonia to prevention of ventilator-associated events. *Respiratory Care*, 64(8). <https://doi.org/10.4187/respcare.06966>

Khayati, N., Rohana, N., & Apriana, R. (2020). Faktor-Faktor yang Berhubungan Dengan Kejadian Associated Ventilator Pneumonia Pasien yang pada Menggunakan Ventilator Mekanik. *Jurnal Ners Widya Husada*, 4(3), 85-94

Klompas, M., Branson, R., Cawcutt, K., Crist, M., Eichenwald, E. C., Greene, L. R., Lee, G., Maragakis, L. L., Powell, K., Priebe, G. P., Speck, K., Yokoe, D. S., & Berenholtz, S. M. (2022). Strategies to prevent ventilator-associated pneumonia, ventilator-associated events, and nonventilator hospital-acquired pneumonia in acute-care hospitals: 2022 Update. *Infection Control & Hospital Epidemiology*, 43(6), 687–713. <https://doi.org/10.1017/ice.2022.88>

Michelángelo, H., Angriman, F., Pizarro, R., Bauque, S., Kecskes, C., Staneloni, I., García, D., Espínola, F., Mazer, G., & Ferrari, C. (2020). Implementation of an experiential learning strategy to reduce the risk of ventilator-associated pneumonia in critically ill adult patients. *Journal of the Intensive Care Society*, 21(4). <https://doi.org/10.1177/1751143719887285>

Modi, A. R., & Kovacs, C. S. (2020). Hospital-acquired and ventilator-associated pneumonia: Diagnosis, management, and prevention. *Cleveland Clinic Journal of Medicine*, 87(10), 633–639. <https://doi.org/10.3949/CCJM.87A.19117>

Nababan, et al (2024) Gambaran Tingkat Pengetahuan Perawat Dalam Penerapan Bundle Vap (Ventilator Associated Pneumonia) Di Ruang ICU. *Jurnal ILKES (Jurnal Ilmu Kesehatan)*. Vol 5 No 1. ISSN : 2087-1287.

Nadya Salsabilah (2023). Faktor-Faktor yang Berpengaruh Terhadap Kejadian Ventilator Associated Pneumonia. *Jurnal Medula Volume 13 hal 259-264*

Noviyanti, D. W., Wahyuni, A., Ramdini, D. A., & Ramayani, F. (2022). Hubungan Lama Penggunaan Ventilator Mekanik Dengan Mortalitas di Intensive Care Unit (Icu) RSUD Dr. H. Abdul Moeloek. *Medical Profession Journal of Lampung*, 12(1), 153-159

Nugroho Ari Wibowo, by. (2023). Faktor Yang Berhubungan Dengan VAP (Ventilator Associated Pneumonia) Pada Pasien Yang Terpasang Ventilasi Mekanik Di Ruang ICU RSU Haji Surabaya.

Panjaitan, D. K., Sinatra, J., & Siahaan, D. L. (2021). Hubungan Penggunaan Ventilator Mekanik Terhadap Kejadian Ventilator Associated Pneumonia (VAP). *JKM*, 14(1), 31–40.

Pitriani (2023) Pengaruh Oral Hygiene Terhadap Pencegahan Ventilator Associated Pneumonia (VAP) Di Ruangan Intensif Rumah Sakit Grandmed Lubuk Pakam. *Jurnal Keperawatan dan Fisioterapi (JKF)*, e-ISSN 2655-0830 Vol. 6 No.1 Edisi Mei – Oktober 2023 <https://ejournal.medistra.ac.id/index.php/JKF>. DOI: 10.35451/jkf.v6i1.1883.

Purwaamidjaja, D. B & Lestari. (2019). Infection control risk assessment (ICRA). *Cermin Dunia Kedokteran*, 43(3), 215- 219

PMK no 27 tahun 2017 tentang pencegahan dan pengendalian Infeksi di fasilitas Kesehatan.

Ruririmbwa E, Bhengu BR, Teshome GS (2025) Assessing Measures for Preventing Ventilator Associated Pneumonia among Nurses Working in Intensive Care Units: A Case of Two Selected Referral and Teaching Hospitals in Kigali. *Int J Respir Pulm Med* 12:193. doi.org/10.23937/2378-3516/1410193

Shah, H., Ali, A., Patel, A. A., Abbagni, V., Goswami, R., Kumar, A., Velasquez Botero, F., Otite, E., Tomar, H., Desai, M., Maiyani, P., Devani, H., Siddiqui, F., & Muddassir, S. (2022). Trends and Factors Associated With Ventilator-Associated Pneumonia: A National Perspective. *Cureus*. <https://doi.org/10.7759/cureus.23634>

Susanti, E., Utomo, W., Dewi, Y. I., Perawat, M. /, Eka, R. S., Pekanbaru, H., Program, D., Keperawatan, S. I., & Riau, U. (2015). Identifikasi Faktor Resiko Kejadian Infeksi Nosokomial Pneumonia Pada Pasien Yang Terpasang Ventilator Di Ruang Intensive Care. In *JOM* (Vol. 2, Issue 1).

Widaningsih, A. (2022). Hubungan Tingkat Pengetahuan Tentang Bundle VAP Terhadap Perilaku Perawat Dalam Pencegahan VAP (RSCM). *Binawan*.

Wenze Li (2024) Incidence and risk factors of ventilator-associated pneumonia in the intensive care unit: a systematic review and meta-analysis. *Journal of Thoracic Disease*, Vol 16, No 9.

Wulan, Et.al (2024) Faktor-Faktor Yang Berhubungan Dengan Kejadian Ventilator Associated Pneumonia (VAP) Pada Pasien Kritis. *Altra: Jurnal Keperawatan Holistik (AJKH)*. Volume 1, Nomor 1

Wulandari, K. P. (2024). Efektivitas Pemberian Oral Hygiene, Close Suction Dan Head Up 30-450 Sebagai Bundle Pencegahan Vap (Ventilator Associated Pneumonia) Di Ruang ICU RSUP prof dr. I. G. N. *Jurnal Ilmiah Keperawatan Altruistik (JIKA)*, Vol.7 No. 1.

Vigo Agustilano Salim (2023) Penerapan Elevasi Head Of Bed 45 Derajat Pada Pasien Cerebrovascular Accident Untuk Pencegahan Ventilator Associated Pneumonia Di Ruang ICU RSD DR Soebandi Jember. *Jurnal Ilmiah Keperawatan (Scientific Journal of Nursing)*, Vol 9, No 3.

Vincent JL, Abraham E, Kochanek P, Moore FA, Fink MP (2017). *Textbook of Critical Care* Sixth Edition. China: Elsevier Sunders ;p.328-479

Xie, J., Yang, Y., Huang, Y., Kang, Y., Xu, Y., Ma, X., Wang, X., Liu, J., Wu, D., Tang, Y., Qin, B., Guan, X., Li, J., Yu, K., Liu, D., Yan, J., & Qiu, H. (2018). The Current Epidemiological Landscape of Ventilator-associated Pneumonia in the Intensive Care Unit: A Multicenter Prospective Observational Study in China. *Clinical Infectious Diseases*, 67, S153–S161. <https://doi.org/10.1093/cid/ciy692>

Yesi Maria. (2022). Faktor yang berhubungan dengan kejadian VAP di ICU RSU Kabupaten tanggerang. *Jurnal Epidemiologi Kesehatan Indonesia*, 6(Artikel Penelitian), 119–123.