## **Indonesian Journal of Global Health Research**

Volume 6 Number 4, Agustus 2024 e-ISSN 2715-1972; p-ISSN 2714-9749



http://jurnal.globalhealthsciencegroup.com/index.php/IJGHR

## ROLE OF VITAMIN D IN THE TREATMENT OF ATOPIC DERMATITIS

Claudia Felicia Limanda<sup>1</sup>, Gabriella<sup>2</sup>, Elvira Bernadetta<sup>3</sup>, Jackson Hakim<sup>4</sup>, Verika Christabela Tansuri<sup>5</sup>

<sup>1</sup>Faculty of Medicine, Udayana University, Jl. Raya Unud Campus, Jimbaran, District. Kuta Selatan, Badung,
Bali 80361 Bali, Indonesia

<sup>2</sup>Faculty of Medicine, Atma Jaya University, Jl. Gen. Sudirman No.51, Karet Semanggi, Setiabudi, South Jakarta, Jakarta 12930, Indonesia

<sup>3</sup>Faculty of Medicine, Indonesian Methodist University, Jl. Hang Tuah No. 8, Upper Madras, Polonia, Medan, North Sumatra 20151, Indonesia

<sup>4</sup>Faculty of Medicine, North Sumatra University, Dr. Street T. Mansur No.9, Padang Bulan, Medan Baru, Medan, North Sumatra 20155, Indonesia

<sup>5</sup>Faculty of Medicine, Pelita Harapan University, Jalan M.H. Thamrin Boulevard No. 1100, Klp. Dua, Cpl. Dua, Tangerang, Banten 15811, Indonesia

\*claudiafelicialimanda@gmail.com

#### **ABSTRACT**

Atopic dermatitis (AD) is a chronic and recurrent inflammatory condition that affects patients' quality of life. One alternative that has an anti-inflammatory effect on AD is vitamin D (25-hydroxyvitamin D (25(OH)D). Although the main treatment for AD uses drugs such as corticosteroids or immunosuppressants, the side effects caused are quite high. Therefore, the aim of this review This literature aims to find out more about the effectiveness of vitamin D against AD, so that it can be an alternative treatment option. Objective: To determine the role of vitamin D in the treatment of atopic dermatitis. Method: The research took database sources from Pubmed, Google Scholar, Science Direct, and Cochrane from 2014-2023 which were then selected based on the inclusion and exclusion criteria that had been created. A total of 17972 articles were found using the keywords ("Vitamin D" OR "Calciferol" OR "Calcitriol") AND "Atopic Dermatitis" AND ("Role" OR "Function") which then after screening, 16 articles were taken for this literature review. Results: AD is an inflammatory condition that is influenced by various factors. The severity of this disease can be assessed using SCORAD or EASI. AD patients generally have lower serum vitamin D levels and decreased SCORAD index. However, vitamin D supplementation in AD treatment varies according to each country and geographic region. Conclusions: Various studies have been conducted to review the effects of vitamin D supplementation on AD, but not all of them show significant effects. This is influenced by many factors, especially age, dosage, preparation, country and geographical area. So more in-depth research is needed on this matter.

Keywords: atopic dermatitis; calciferol; calcitriol; vitamin D

| First Received       | Revised        | Accepted      |  |
|----------------------|----------------|---------------|--|
| 16 March 2024        | 23 April 2024  | 24 April 2024 |  |
| Final Proof Received |                | Published     |  |
| 10 May 2024          | 01 August 2024 |               |  |

#### How to cite (in APA style)

Limanda, C., Gabriella, G., Bernadetta, E., Hakim, J., & Tansuri, V. (2024). Role of Vitamin D in the Treatment of Atopic Dermatitis. Indonesian Journal of Global Health Research, 6(4), 1861-1872. https://doi.org/10.37287/ijghr.v6i4.3195.

#### INTRODUCTION

Atopic dermatitis (AD) is a chronic inflammatory skin condition with clinical presentations of dry, itchy, and inflamed skin (Kim et al., 2016). AD is caused by multifactorial factors (genetic, environmental, immunological, and barrier dysfunction). Vitamin D plays a crucial role not only in maintaining bone health, but also in supporting immune function in inflammatory disorders, including AD or eczema. Vitamin D has therapeutic effects on treatment of AD, such as maintaining the immune system by modulating T cells, B cells, and dendritic cells, reducing production of pro-inflammatory cytokines such as interleukin-17 (IL-

17) and interleukin-22 (IL-22), and promoting production of anti-inflammatory cytokines such as interleukin-10 (IL-10). In addition, vitamin D promotes keratinocyte differentiation and enhances protein expression involved in skin barrier formation. This suggests that supplementation of vitamin D decreases transepidermal water loss and increases filaggrin levels that are substantial in skin barrier restoration in AD patients. Clinical trials investigating the effects of vitamin D supplementation on AD have shown mixed results. Some studies suggest that vitamin D may lead to improvements in AD symptoms and severity while others do not find significant benefits. Therefore, an elaboration on this topic is necessary (Kim & Bae., 2016).

AD severity is evaluated through clinical tools known as SCORing Atopic Dermatitis (SCORAD) and Eczema Area and Severity Index (EASI) (Eichenfield et al., 2014; Chrichton et al., 2021). SCORAD takes into account objective signs, subjective symptoms, and the extent of affected areas of AD and converts it to a numerical score. AD severity is then categorized as mild, moderate, and severe based on this total score (Eichenfield et al., 2014). Another standardized way to measure disease severity and track treatment progress is EASI. EASI measures the extent and intensity of AD lesions in four different regions by observing four specific eczema signs and scoring them on a scale of 0 to 3 (none, mild, moderate, severe) for each body region. Higher EASI score indicates more severe AD (Chrichton et al., 2021). The main treatment for AD uses drugs such as corticosteroids or immunosuppressants, the side effects caused are quite high. Therefore, the aim of this literature review is to further determine the efficacy of vitamin D as an alternative in AD treatment.

#### **METHOD**

The search strategy used the keywords ("Vitamin D" OR "Calciferol" OR "Calcitriol") AND "Atopic Dermatitis" AND ("Role" OR "Function") on various electronic databases such as Pubmed, Google Scholar, Science Direct, and Cochrane with a total of 17972 articles. Then articles were screened using inclusion and exclusion criteria. Inclusion criteria include articles with publication years 2014-2023, articles published in English, and articles in the form of meta-analyses, systematic reviews, cohort studies, case reports, and literature reviews. Exclusion criteria included articles published in books, websites, and articles with only abstracts, not open access, and without full text articles. There were 16 articles used in this literature review.

## **RESULTS**

# Scoring of Atopic Dermatitis (SCORAD) Index and Eczema Area and Severity Index (EASI) Score

Scoring of Atopic Dermatitis (SCORAD) index, developed in 1993 by the European Task Force of Atopic Dermatitis (ETFAD) is a scoring method to assess severity of AD. SCORAD evaluates the extent of AD (A: according to rule of nine; 20% of the score), intensity (B: erythema, oedema/papules, effect of scratching, crust formation, lichenification, and dryness; 60% of the score; four grades for each item: 0,1,2,3), and subjective symptoms (C: itch, sleeplessness; 20% of the score) of the most representative lesion rather than the most severe or mildest lesion. Severity of AD is divided into mild (score below 25), moderate (score between 25-50), and severe (score beyond 50) (Figure 1). This evaluation can be completed between 7-10 minutes according to investigators' experience (Severity Scoring of Atopic Dermatitis: The SCORAD Index., 1993; Oranje et al., 2007).

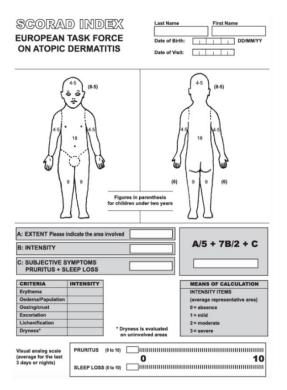



Figure 1. SCORAD index (Severity Scoring of Atopic Dermatitis: The SCORAD Index., 1993; Oranje et al., 2007).

Eczema Area and Severity Index (EASI) was developed in 1998 and validated in order to meet the standard as an AD severity evaluation tool. According to Harmonizing Outcome Measures in Eczema (HOME), EASI is a recommended core instrument for measuring signs in all AD clinical trials (Hanifin et al., 2022).

| Severity Sco                                                                 | y Score Area Score |                                       |                                                 |               |                     |                      |                |               |                     |              |                                       |         |
|------------------------------------------------------------------------------|--------------------|---------------------------------------|-------------------------------------------------|---------------|---------------------|----------------------|----------------|---------------|---------------------|--------------|---------------------------------------|---------|
| Grade each sigr<br>a scale:<br>0=clear/none                                  | - 11               | % In                                  | volvement                                       | . 0           | 1-9%                | 10-29%               | 30-4           | 9%            | 50-69%              | 70-          | -89%                                  | 90-100% |
| 0=clear/none<br>1=mild<br>2=moderate<br>3=severe                             |                    | Area Score                            |                                                 | o             | 1                   | 2                    | 3              |               | 4                   |              | 5                                     | 6       |
| EASI Calculator (Adults)                                                     |                    |                                       |                                                 |               |                     |                      |                |               |                     |              |                                       |         |
| Body Region                                                                  | Erythen<br>(0-3)   | na j                                  | Edema/<br>Papulation<br>(0-3)                   | Excori<br>(0- |                     | Lichenifica<br>(0-3) | tion           | Se            | rea<br>:ore<br>0-6) | Multiplier   |                                       | Score   |
| Head/Neck                                                                    | (                  | +                                     | +                                               |               | +                   |                      | )              | ×             |                     | × 0          | 0.1                                   |         |
| Trunk                                                                        | (                  | +                                     | +                                               |               | +                   |                      | )              | ×             |                     | × 0          | 0.3                                   |         |
| Upper<br>Extremities                                                         | (                  | +                                     | +                                               |               | +                   |                      | )              | ×             |                     | × 0          | 0.2                                   |         |
| Lower                                                                        | (                  | +                                     | +                                               |               | +                   |                      | )              | ×             |                     | x 0          | 0.4                                   |         |
| Extremities                                                                  |                    |                                       | The fin                                         | al EASI       | score i             | s the sum o          | of the         | 4 re          | gion sco            | res (C       | 0-72):                                |         |
| EASI Calcula Body Region                                                     | Erythen            | T                                     |                                                 | ears (        | old)                | Lichenifica          |                | А             | rea                 | res (C       |                                       | Score   |
| EASI Calcula                                                                 |                    | T                                     | trics < 8 y                                     | ears (        | old)                |                      |                | A<br>Se       | rea                 |              |                                       | Score   |
| EASI Calcula                                                                 | Erythen            | T                                     | trics < 8 y<br>Edema/<br>Papulation             | ears (        | old)                | Lichenifica          |                | A<br>Se       | rea<br>core         | Multi        |                                       | Score   |
| EASI Calcula<br>Body Region<br>Head/Neck                                     | Erythen<br>(0-3)   | na I                                  | trics < 8 y<br>Edema/<br>Papulation<br>(0-3)    | ears (        | old)<br>ation<br>3) | Lichenifica          | tion           | A<br>Se<br>(f | rea<br>core         | Multi<br>x ( | iplier                                | Score   |
| EASI Calcula<br>Body Region                                                  | Erythen<br>(0-3)   | na  <br>+                             | trics < 8 y  Edema/ Papulation (0-3)            | ears (        | old)<br>ation<br>3) | Lichenifica          | ition )        | A<br>Se<br>(f | rea<br>core         | Multi<br>x ( | iplier                                | Score   |
| EASI Calcula Body Region Head/Neck Trunk Upper                               | Erythen<br>(0-3)   | +<br>+                                | trics < 8 y Edema/ Papulation (0-3) +           | ears (        | old) ation 3)       | Lichenifica          | rtion<br>)     | X<br>X        | rea<br>core         | Multi<br>x ( | iplier<br>0.2                         | Score   |
| EASI Calcula Body Region Head/Neck Trunk Upper Extremities Lower             | (0-3)              | + + +                                 | trics < 8 y Edema/ Papulation (0-3) + + +       | ears (Excori  | old) ation 3) + + + | Lichenifica          | )<br>)         | X<br>X<br>X   | rea<br>core<br>0-6) | x (          | 0.2<br>0.3                            | Score   |
| EASI Calcula Body Region Head/Neck Trunk Upper Extremities Lower Extremities | (0-3)              | + + + + +                             | Edema/ Papulation (0-3)  +  +  The fire         | ears (Excori  | old) ation 3) + + + | Lichenifica<br>(0-3) | )<br>)         | X<br>X<br>X   | rea<br>core<br>0-6) | x (          | 0.2<br>0.3                            | Score   |
| EASI Calcula Body Region Head/Neck Trunk Upper Extremities Lower             | (0-3)              | + + + + + + + + + + + + + + + + + + + | trics < 8 y Edema/ Papulation (0-3) + + The fir | ears (Excori  | old) ation 3) + + + | Lichenifica<br>(0-3) | ) ) ) ) of the | X<br>X<br>X   | rea<br>core<br>0-6) | x (          | iplier<br>0.2<br>0.3<br>0.2<br>0.72): | Score   |

Figure 2. EASI score assessment and calculation (Hanifin et al., 2022).

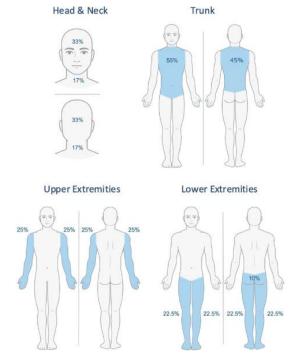



Figure 3. Area of involvement (Hanifin et al., 2022).

Vitamin D: Mechanism of Action in AD Treatment The effects of vitamin D supplementation can be observed in Table 1 and Figure 4:

Table 1. Vitamin D Supplementation Effects in AD Severity

| N  | Author name, year                                                                 | Participants                                        | Dose of Vitamin D                                                                         | Duration of | Results                                                                                                                                    |
|----|-----------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| О  |                                                                                   |                                                     |                                                                                           | Treatment   |                                                                                                                                            |
| Vi | tamin D administered in hu                                                        | ıman (supporting st                                 | udy)                                                                                      |             |                                                                                                                                            |
| 1. | Vestita et al., 2015;<br>Hattangdi-Haridas et<br>al., 2019; Kim G et al.,<br>2016 | Children with AD                                    | 1000-1600 IU                                                                              | 1-3 months  | AD severity improvement (a decrease of 7-10 in SCORAD index) <sup>2,18,19</sup> ,                                                          |
| 2. | Fu et al., 2022                                                                   | AD patients                                         |                                                                                           | 1-3 months  | AD severity improvement (a decrease of 11-19 in SCORAD index) <sup>21</sup>                                                                |
| 3. | Ghanem et al., 2017                                                               | Children with AD                                    | 500 IU (5 drops<br>daily)                                                                 | 1 month     | AD severity<br>improvement (a<br>decrease of 10 in<br>SCORAD index) <sup>22</sup>                                                          |
| 4. | Raj <i>et al.</i> , 2022                                                          | AD patients                                         | 1000 IU                                                                                   | 3 months    | AD severity improvement (a maximum decrease of 41 in SCORAD index (severe AD) and a decrease of 2 in SCORAD index (mild AD)) <sup>23</sup> |
| 5. | Bothou et al., 2018                                                               | 8-year-old girl<br>with AD lesions<br>in all region | Oral calcitriol of<br>0.5 mcg (3 times<br>daily) and oral<br>cholecalciferol<br>(4000 IU) | 6 months    | AD severity improvement (a decrease of SCORAD index from 70 to 10) <sup>24</sup>                                                           |

| 6. | Sánchez-Armendáriz <i>et al.</i> , 2018 | AD patients                                                 | 5000 IU                                                  | 1-3 months | AD patients with serum levels >30 ng/mL are more responsive compared to AD patients with serum levels ≤30 ng/mL. <sup>25</sup>                                                                                    |
|----|-----------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. | Camargo et al., 2014                    | AD children                                                 | Oral drop of                                             | 1 month    | A decrease of EASI                                                                                                                                                                                                |
|    |                                         | with the                                                    | Vitamin D                                                |            | score of 6.5; a                                                                                                                                                                                                   |
|    |                                         | average of 9                                                | supplementation                                          |            | decrease of IGA of 1                                                                                                                                                                                              |
|    |                                         | years old                                                   | (1000 IU)                                                |            | in AD children. <sup>26</sup>                                                                                                                                                                                     |
| Vi | tamin D administered in hu              |                                                             |                                                          |            |                                                                                                                                                                                                                   |
| 1. | Park et al., 2023                       | AD patients                                                 | 2000 IU                                                  |            | Vitamin D<br>supplementation does<br>not significantly<br>decrease SCORAD<br>Index compared to<br>placebo. <sup>27</sup>                                                                                          |
| 2. | Lara-Corrales <i>et al.</i> , 2019      | Children with AD                                            | Oral drop of<br>Vitamin D<br>supplementation<br>(2000 IU | 3 months   | No significant<br>difference on<br>SCORAD Index. <sup>28</sup>                                                                                                                                                    |
| Vi | tamin D administered in an              | imals                                                       |                                                          |            |                                                                                                                                                                                                                   |
| 1. | Umehara et al., 2023                    | NC/Nga mice<br>(Nishiki-nezumi<br>Cinnamon/Nag<br>oya mice) | Topical Vitamin D                                        | 4 days     | Significant decrease of dermatitis score and TEWL (1 nmol topically compared to 0.1 nmol); increase of epidermal thickness (0.1 nmol topically); decrease of epidermal thickness (1 nmol topically) <sup>29</sup> |

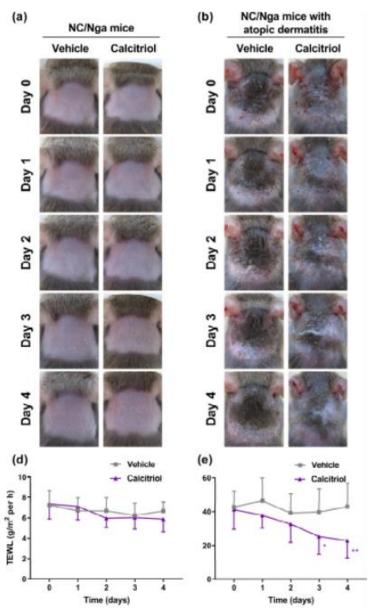



Figure 4. The effects of a daily topical application of calcitriol for 4 days on the condition of the skin in NC/Nga mice without atopic dermatitis (a) and NC/Nga mice with atopic dermatitis (b) (Umehara et al., 2023).

Vitamin D Status in Atopic Dermatitis Patients

Vitamin D status and serum level in AD patients can be observed in Table 2 and Table 3.

Table 2. Vitamin D Status in AD Patients

| No | Authors name, year               | Participants     | Mean of Vitamin D serum levels   |
|----|----------------------------------|------------------|----------------------------------|
| 1. | Vestita et al., 2015; Hattangdi- | All Ages with AD | Decrease about 2.0-13.63 ng/mL   |
|    | Haridas et al., 2019; Fu et al., |                  | at baseline                      |
|    | 2022                             | Children with AD | 5.2-23.2 ng/mL                   |
|    |                                  |                  | (Decrease about 3.0-6.4 ng/mL at |
|    |                                  |                  | baseline)                        |
|    |                                  | Adults with AD   | 10.2-28.9 ng/mL                  |
|    |                                  |                  | (Decrease about 0.10.9 ng/mL at  |
|    |                                  |                  | baseline; not statistically      |
|    |                                  |                  | significant)                     |

| 2. | Vestita et al., 2015 | Mild AD                       | 21.2 ng/mL                         |
|----|----------------------|-------------------------------|------------------------------------|
|    |                      | Moderate AD                   | 17.8 ng/mL                         |
|    |                      | Severe AD                     | 13.3 ng/mL                         |
| 3. | Dogru., 2018         | Children with severe AD       | < 20 ng/mL                         |
|    |                      | compared to children with     |                                    |
|    |                      | moderate and mild AD          |                                    |
| 4. | Hata et al., 2014    | Children with AD and darker   | Type V/VI skin had a lower mean    |
|    |                      | skin color (Fitzpatrick V and | level of 18.8 ng/mL in comparison  |
|    |                      | VI)                           | to Type III/IV with a mean level   |
|    |                      |                               | of $28.7 \text{ ng/mL} (P = 0.04)$ |

Table 3. Vitamin D Supplementation to Improve Serum Level in AD Patients

| No | Author name, year                  | Participants                   | Dose of   | Duration of | Improvement of Vitamin                                       |
|----|------------------------------------|--------------------------------|-----------|-------------|--------------------------------------------------------------|
|    |                                    |                                | Vitamin D | Treatment   | D serum levels                                               |
| 1. | Lara-Corrales <i>et al.</i> , 2019 | Children with AD               | 2000 IU   | 3 months    | 18.8 ng/mL to 32.6 ng/<br>mL (improvement of 13.8<br>ng/ mL) |
| 2. | Hata et al., 2014                  | Adults with AD                 | 4000 IU   | 3 weeks     | 28.4 ng/mL to 37.8 ng/<br>mL (improvement of 9.4<br>ng/ mL)  |
| 3. | Sánchez-Armendáriz et al., 2018    | Children and<br>Adults with AD | 5000 IU   | 3 months    | Improvement of 18.8 ng/mL                                    |

## **DISCUSSION**

## **Atopic Dermatitis**

Atopic dermatitis (AD) is a chronic and recurring inflammatory cutaneous condition characterized by pruritus, eczematous plaques, and impaired epidermal barrier (Mansour & Salah., 2020). AD significantly impacts quality of life in both infants and adults. AD mainly affects young children under the age of seven years old with predilection areas in the face, scalp, and extensor surfaces. However, AD is also frequent among adults with epidemiology of 7-10% and predilection area mainly in flexural surfaces (Aldaghi et al., 2022; Weidinger et al., 2018). AD is caused by both genetic and environmental factors. Patients with a family history of atopic diseases (eczema, asthma, and allergic rhinitis) often have impaired skin barrier function due to genes mutation such as filaggrin (FLG) that leads to reduced water retention and increased susceptibility to irritants and allergens which can trigger further immune responses (O'Regan et al., 2009; Margolis et al., 2012). The immune system in AD is skewed towards a Th2-dominant response, leading to an increased production of proinflammatory cytokines such as interleukin-4 (IL-4), interleukin-13 (IL-13), interleukin-31 (IL-31) that induces inflammation and itching. AD patients also have elevated levels of Immunoglobulin E (IgE) that binds mast cells which release histamines and other inflammatory mediators, leading to itching and inflammation (Gittler et al., 2012). Exacerbation of AD is also caused by environmental factors such as limited exposure to ultraviolet light, living in dry climatic conditions, and consuming a diet high in sugars and polyunsaturated fatty acids (O'Regan et al., 2009; Flohr & Mann., 2014).

## **Previous Treatment of Atopic Dermatitis**

## 1. Methotrexate (MTX)

Methotrexate (MTX) is an immunosuppressant commonly used in psoriasis. MTX is administered orally, intravenously, and subcutaneously. Randomized trials using MTX and Azathioprine showed a good outcome on severe ADs and a decrease of mean SCORAD in week 12. However, MTX often causes liver toxicity. MTX is also teratogenic, therefore women of child bearing potential must use effective contraception during therapy (Wollenberg et al., 2019).

## 2. Mycophenolate Mofetil (MMF)

Mycophenolate Mofetil (MMF) is an immunosuppressant drug commonly used in treatment of systemic lupus erythematosus and prevention of transplant rejection. According to several case reports and uncontrolled clinical trials, MMF is considered effective in AD treatment. However, MMF has some side effects including gastrointestinal problems (nausea and diarrhea; only at the start of treatment), leukopenia, and thrombocytopenia. MMF should also be discontinued 6 weeks before starting pregnancy (Wollenberg et al., 2019).

## Vitamin D: Mechanism of Action in AD Treatment

Antimicrobial peptides (AMPs), filaggrin, and involucrin also enhance epidermal barrier health (Mutgi & Ko., 2012). Vitamin D supports immune system and decreases local and systemic inflammation by modulating cytokine production, inhibiting T-helper cell (Th-1 and Th-17) proliferation, and decreasing IL-2, IFN-y, and IL-4 secretion (Di Filippo et al., 2015). AD is a condition where skin barrier function is deficient and cathelicidin levels are altered. An altered cytokine microenvironment suppresses AMPs expression, specifically Th2 cytokines (IL-4 and IL-13) (Di Filippo et al., 2015). Vitamin D promotes toll-like receptor and antimicrobial peptides (cathelicidin, B defensin), improves external tolerability to pathogens by inducing LL-37, and reduces cytokine release, inflammation, and angiogenesi (Vestita et al., 2015). Vitamin D also suppresses pro-inflammatory cytokines (IL-12, IFN-y), inhibits IgE release, and stimulates IL-4, IL-5, IL-10 production in order to inhibit dendritic cell activity and mast cell release (Kim et al., 2016; Hattangdi-Haridas et al., 2019). However, vitamin D supplementation in infants during breast-feeding is not recommended due to an increase risk of allergen penetration through the skin (Kim et al., 2016; Vestita et al., 2015).

The effect of vitamin D supplementation on AD still has pros and cons as seen in Table 1. Most studies show a decrease in the SCORAD index. Even research conducted by Bothou et al. showed quite significant results, namely a decrease in the SCORAD index from 70 to 10 using oral calcitriol and cholecalciferol. However, the other 2 articles showed no significant results. This can be influenced by various factors, such as dose, age, and geographic location. However, vitamin D supplementation in AD treatment differs according to each country and geographical regions. SCORAD Index in AD patients receiving vitamin D supplementation decrease significantly in Iran and Mexico but increase significantly in Italy. According to WHO, there is no significant difference in SCORAD Index in America (Park et al., 2023). Meanwhile, research on NC/Nga mice using topical calcitriol for 4 days showed a significant reduction in dermatitis and TEWL scores (1 nmol topical compared to 0.1 nmol); increased epidermal thickness (0.1 nmol topical); decreased epidermal thickness (1 nmol topical). This supports the beneficial effects of vitamin D (Umehara et al., 2023).

## **Vitamin D Status in Atopic Dermatitis Patients**

AD patients generally has lower vitamin D serum levels and a decrease in SCORAD index (Ghanem et al., 2017; Raj et al., 2022; Sanchez-Armendariz et al., 2018; Hata et al., 2014). Serum vitamin D levels in AD patients are influenced by various factors, namely age, severity, and race. In several studies in Table 2, it can be seen that serum vitamin D levels increase with age, decrease with increasing AD severity, and are higher in whites than blacks. Vitamin D supplementation can help increase serum vitamin D levels as shown in Table 3. However, According to Endocrine Society Clinical Practice guideline, vitamin D supplementation will increase the risk of persistent AD especially after long treatment periods as shown in a cross-sectional study in AD children after four years of therapy. Therefore, it is necessary for clinicians to be concerned (Hata et al., 2014)

# Vitamin D Supplementation for Babies Below 1 Year Old

Drug administration, especially vitamin D supplementation in babies is noted based on body weight to reach maximum effect. Vitamin D supplementation with a daily dose of 1000 IU for 2 months has shown a decrease in SCORAD index with an average of 12 in babies below 1 year old. In addition, there is a percentage shrinkage from 59.2% to 14.8% in babies with moderate AD (Aldaghi et al., 2022).

## **Early Vitamin D Supplementation in AD Prevention**

Allergic diseases, including atopic dermatitis are common in newborn babies with vitamin D deficiency, therefore early supplementation may be necessary. However, according to an RCT conducted by Rosendahl et al., there are no shown differences in the application of high dose vitamin D to babies aged 2 weeks to 24 months old neither with daily dose of 400 IU or 2000 IU for 12 months (Rosendahl et al., 2019).

## **Topical Vitamin D Application in Atopic Dermatitis**

Currently, there are no clear studies nor consensus discussing about topical vitamin D application in AD treatment. However, a case report of a 36-year-old man with AD reported a positive effect when a low dose of calcitriol cream (0.6 ug/g) was applied twice daily for 10 days to his upper and lower eyelid. Therefore, it could be concluded that low dose of topical calcitriol application restores a normal cytokine balance resulting in the improvement of skin lesions (Mirzakhani et al., 2015).

#### **CONCLUSION**

Several trials using vitamin D to relieve AD symptoms have shown satisfactory results. These beneficial effects may be due to the induction of endogenous AMPs in AD skin via oral vitamin D supplementation. Differences in research results regarding vitamin D supplementation for DA can be influenced by various factors such as age, dose, preparation, country and geographical area. Therefore, it is recommended to conduct further research on the effectiveness of vitamin D, especially in the treatment of AD for further clinical implementation.

### **REFERENCES**

Multistrain synbiotic and vitamin D3 supplements on the severity of atopic dermatitis among infants under 1 year of age: a double-blind, randomized clinical trial study. J Dermatolog Treat, 33(2), 812-7.

Bothou, C., Alexopoulos, A., Dermitzaki, E., Kleanthous, K., Papadimitriou, A., Mastorakos, G., Papadimitriou, D. T. (2018). Successful Treatment of Severe Atopic Dermatitis with

- Calcitriol and Paricalcitol in an 8-Year-Old Girl. Case Rep Pediatr, 2018, 9643543. doi: 10.1155/2018/9643543. PMID: 30034905; PMCID: PMC6035840.
- Camargo, C. A., Ganmaa, D., Sidbury, R., Erdenedelger, K., Radnaakhand, N., Khandsuren, B. (2014). Randomized trial of vitamin D supplementation for winter-related atopic dermatitis in children. J Allergy Clin Immunol, 134(4), 831-835.e1. http://dx.doi.org/10.1016/j.jaci.2014.08.002
- Crichton, M. L., Nicholas, C., Purcell, S. (2021). The Eczema Area and Severity Index—A Practical Guide. J Aesthetic Nurs, 10(4), 174-179. doi:10.12968/joan.2021.10.4.174.
- Di Filippo, P., Scaparrotta, A., Rapino, D., Cingolani, A., Attanasi, M., Petrosino, M. I., Chuang, K., Di Pillo, S., Chiarelli, F. (2015). Vitamin D Supplementation Modulates the Immune System and Improves Atopic Dermatitis in Children. International Archives of Allergy and Immunology, 166, 91 96.
- Dogru, M. (2018). Is vitamin D level associated with the natural course of atopic dermatitis? Allergol Immunopathol (Madr), 46(6), 546–51. https://doi.org/10.1016/j.aller.2017.12.004
- D'Auria, E., Barberi, S., Cerri, A., Boccardi, D., Turati, F., Sortino, S., Banderali, G., Ciprandi, G. (2017). Vitamin D status and body mass index in children with atopic dermatitis: A pilot study in Italian children. Immunol Lett, 181, 31–5. http://dx.doi.org/10.1016/j.imlet.2016.11.004
- Eichenfield, L. F., Tom, W. L., Berger, T. G., Krol, A., Paller, A. S., Schwarzenberger, K., Bergman, J. N., Chamlin, S. L., Cohen, D. E., Cooper, K. D., Cordoro, K. M., Davis, D. M., Feldman, S. R., Hanifin, J. M., Margolis, D. J., Silverman, R. A., Simpson, E. L., Williams, H. C., Elmets, C. A., Block, J., Harrod, C. G., Begolka W. S., Sidbury, R. (2014). Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol, 71(1), 116-32. doi: 10.1016/j.jaad.2014.03.023.
- Flohr, C., Mann, J. (2014). New insights into the epidemiology of childhood atopic dermatitis. Allergy, 69(1), 3-16.
- Fu, H., Li, Y., Huang, H., Wang, D. (2022). Serum Vitamin D Level and Efficacy of Vitamin D Supplementation in Children with Atopic Dermatitis: A Systematic Review and Meta-analysis. Comput Math Methods Med, 2022. https://doi.org/10.1155/2022/9407888
- Ghanem, B. M., Salem, H. A., Marzouk, H. F., Ismail, A. E. Y. (2017). Serum Vitamin D level in Egyptian children with atopic dermatitis and efficacy of Vitamin D supplementation. J Egypt Women's Dermatologic Soc, 14(3), 190–6. http://dx.doi.org/10.1097/01.EWX.0000516170.33041.a5
- Gittler, J. K., Shemer, A., Suárez-Fariñas, M., Fuentes-Duculan, J., Gulewicz, K. J., Wang, C. Q., Mitsui, H., Cardinale, I., de Guzman Strong, C., Krueger, J. G., Guttman-Yassky, E. (2012). Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol, 130(6), 1344-54. doi: 10.1016/j.jaci.2012.07.012.

- Hanifin, J. M., Baghoomian, W., Grinich, E., Leshem, Y. A., Jacobson, M., Simpson, E. L. (2022). The Eczema Area and Severity Index-A Practical Guide. Dermat contact, atopic, Occup drug, 33(3), 187–92. https://doi.org/10.1097/der.00000000000000895
- Hata, T. R., Audish, D., Kotol, P., Coda, A., Kabigting, F., Miller, J., Alexandrescu, D., Boguniewicz, M., Taylor, P., Aertker, L., Kesler, K., Hanifin, J. M., Leung, D. Y., Gallo, R. L. (2014). A randomized controlled double-blind investigation of the effects of vitamin D dietary supplementation in subjects with atopic dermatitis. J Eur Acad Dermatol Venereol, 28(6), 781-9. doi: 10.1111/jdv.12176.
- Hattangdi-Haridas, S. R., Lanham-New, S. A., Wong, W. H. S., Ho, M. H. K., Darling, A. L. (2019). Vitamin D Deficiency and Effects of Vitamin D Supplementation on Disease Severity in Patients with Atopic Dermatitis: A Systematic Review and Meta-Analysis in Adults and Children. Nutrients, 11(8), 1854. doi: 10.3390/nu11081854.
- Kim, G., Bae, J. H. (2016). Vitamin D and atopic dermatitis: A systematic review and meta-analysis. Nutrition, 32(9), 913-920.
- Kim, J. E., Kim, H. J., Lew, B. L., Lee, K. H., Hong, S.P. (2016). The severity of atopic dermatitis evaluated with the SCORAD index and the occurrence of bronchial asthma and rhinitis, and the duration of atopic dermatitis. Allergy, Asthma & Immunology Research, 8(4), 353-358. doi:10.4168/aair.2016.8.4.353.
- Kim, M. J., Kim, S. N., Lee, Y. W., Choe, Y. B., Ahn, K. J. (2016). Vitamin D Status and Efficacy of Vitamin D Supplementation in Atopic Dermatitis: A Systematic Review and Meta-Analysis. Nutrients, 8(12), 789. doi: 10.3390/nu8120789.
- Lara-Corrales, I., Huang, C. M., Parkin, P. C., Rubio-Gomez, G. A., Posso-De Los Rios, C. J., Maguire, J., Pope, E. (2019). Vitamin D Level and Supplementation in Pediatric Atopic Dermatitis: A Randomized Controlled Trial. J Cutan Med Surg, 23(1), 44-49. doi: 10.1177/1203475418805744.
- Mansour, N. O., Mohamed, A. A., Hussein, M., Eldemiry, E., Daifalla, A., Hassanin, S., Nassar, N., Ghaith, D., Salah, E. M. (2020). The impact of vitamin D supplementation as an adjuvant therapy on clinical outcomes in patients with severe atopic dermatitis: A randomized controlled trial. Pharmacol Res Perspect, 8(6), e00679. doi: 10.1002/prp2.679.
- Margolis, D. J., Apter, A. J., Gupta, J., Hoffstad, O., Papadopoulos, M., Campbell, L. E., Sandilands, A., McLean, W. H., Rebbeck, T. R., Mitra, N. (2012). The persistence of atopic dermatitis and filaggrin (FLG) mutations in a US longitudinal cohort. J Allergy Clin Immunol, 130(4), 912-7. doi: 10.1016/j.jaci.2012.07.008.
- Mirzakhani, H., Al-Garawi, A., Weiss, S. T., Litonjua, A. A. (2015). Vitamin D and the development of allergic disease: How important is it? Clin Exp Allergy, 45(1), 114–25. https://doi.org/10.1111/cea.12430
- Mutgi, K., Koo, J. (2012). Update on the Role of Systemic Vitamin D in Atopic Dermatitis. Pediatric Dermatology, 30(3), 303–307. doi:10.1111/j.1525-1470.2012.01850.x
- Oranje, A. P., Glazenburg, E. J., Wolkerstorfer, A., De Waard-Van Der Spek, F. B. (2007). Practical issues on interpretation of scoring atopic dermatitis: The SCORAD index,

- objective SCORAD and the three-item severity score. Br J Dermatol, 157(4), 645–8. https://doi.org/10.1111/j.13652133.2007.08112.x
- O'Regan, G. M., Sandilands, A., McLean, W. H. I., Irvine, A. D. (2009). Filaggrin in atopic dermatitis. J Allergy Clin Immunol, 124(3 Suppl 2), R2-R6.
- Park, J. S., Kim, M., Sol, I. S., Lee, K. S., Park, S., Yang, H. J., et al. (2023). Effect of Vitamin D on the Treatment of Atopic Dermatitis with Consideration of Heterogeneities: Meta-Analysis of Randomized Controlled Trials. Allergy, Asthma Immunol Res, 15(2), 262–70. https://doi.org/10.4168/aair.2023.15.2.262
- Raj, K. A. P., Handa, S., Narang, T., Sachdeva, N., Mahajan, R. (2022). Correlation of serum vitamin D levels with severity of pediatric atopic dermatitis and the impact of vitamin D supplementation on treatment outcomes. J Dermatolog Treat, 33(3), 1397–400. http://dx.doi.org/10.1080/09546634.2020.1818677
- Rosendahl, J., Pelkonen, A. S., Helve, O., Hauta-Alus, H., Holmlund-Suila, E., Valkama, S., Enlund-Cerullo, M., Viljakainen, H., Hytinantti, T., Mäkitie, O., Andersson, S., Mäkelä, M. J. (2019). High-Dose Vitamin D Supplementation Does Not Prevent Allergic Sensitization of Infants. J Pediatr, 209, 139-145.e1. doi: 10.1016/j.jpeds.2019.02.021.
- Sánchez-Armendáriz, K., García-Gil, A., Romero, C. A., Contreras-Ruiz, J., Karam-Orante, M., Balcazar-Antonio, D., Domínguez-Cherit, J. (2018). Oral vitamin D3 5000 IU/day as an adjuvant in the treatment of atopic dermatitis: a randomized control trial. Int J Dermatol, 57(12), 1516-1520. doi: 10.1111/ijd.14220.
- Severity Scoring of Atopic Dermatitis: The SCORAD Index. (1993). Consensus Report of the European Task Force on Atopic Dermatitis. Dermatology, 186(1), 23–31. https://doi.org/10.1159/000247298
- Umehara, Y., Trujillo-Paez, J. V., Yue, H., Peng, G., Nguyen, H. L. T., Okumura, K., Ogawa, H., Niyonsaba, F. (2023). Calcitriol, an Active Form of Vitamin D3, Mitigates Skin Barrier Dysfunction in Atopic Dermatitis NC/Nga Mice. Int J Mol Sci, 24(11), 9347. doi: 10.3390/ijms24119347.
- Vestita, M., Filoni, A., Congedo, M., Foti, C., Bonamonte, D. (2015). Vitamin D and atopic dermatitis in childhood. J Immunol Res, 257879. doi: 10.1155/2015/257879.
- Weidinger, S., Beck, L. A., Bieber, T., Kabashima, K., Irvine, A. D. (2018). Atopic dermatitis. Nat Rev Dis Primers, 4(1):1.
- Wollenberg, A., Barbarot, S., Bieber, T., Christen-Zaech, S., Deleuran, M., Fink-Wagner, A., Gieler, U., Girolomoni, G., Lau, S., Muraro, A., Czarnecka-Operacz, M., Schäfer, T., Schmid-Grendelmeier, P., Simon, D., Szalai, Z., Szepietowski, J. C., Taïeb, A., Torrelo, A., Werfel, T., Ring, J. (2019). Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol, 33(7), 1436.